Sun Jianhua, Cao Ye, Zhou Ying, Qi Baoqiao
Department of Cardiology, Shidong Hospital affiliated to University of Shanghai for Science and Technology, Shanghai, China.
Department of Geriatrics, Renhe Hospital, Shanghai, China.
Front Bioeng Biotechnol. 2025 May 6;13:1590962. doi: 10.3389/fbioe.2025.1590962. eCollection 2025.
The application of deep learning techniques in medical image analysis has shown great potential in assisting clinical diagnosis. This study focuses on the development and evaluation of deep learning models for the classification of knee joint injuries using Magnetic Resonance Imaging (MRI) data. The research aims to provide an efficient and reliable tool for clinicians to aid in the diagnosis of knee joint disorders, particularly focusing on Anterior Cruciate Ligament (ACL) tears.
KneeXNet leverages the power of graph convolutional networks (GCNs) to capture the intricate spatial dependencies and hierarchical features in knee MRI scans. The proposed model consists of three main components: a graph construction module, graph convolutional layers, and a multi-scale feature fusion module. Additionally, a contrastive learning scheme is employed to enhance the model's discriminative power and robustness. The MRNet dataset, consisting of knee MRI scans from 1,370 patients, is used to train and validate KneeXNet.
The performance of KneeXNet is evaluated using the Area Under the Receiver Operating Characteristic Curve (AUC) metric and compared to state-of-the-art methods, including traditional machine learning approaches and deep learning models. KneeXNet consistently outperforms the competing methods, achieving AUC scores of 0.985, 0.972, and 0.968 for the detection of knee joint abnormalities, ACL tears, and meniscal tears, respectively. The cross-dataset evaluation further validates the generalization ability of KneeXNet, maintaining its superior performance on an independent dataset.
To facilitate the clinical application of KneeXNet, a user-friendly web interface is developed using the Django framework. This interface allows users to upload MRI scans, view diagnostic results, and interact with the system seamlessly. The integration of Grad-CAM visualizations enhances the interpretability of KneeXNet, enabling radiologists to understand and validate the model's decision-making process.
深度学习技术在医学图像分析中的应用在辅助临床诊断方面显示出巨大潜力。本研究专注于使用磁共振成像(MRI)数据开发和评估用于膝关节损伤分类的深度学习模型。该研究旨在为临床医生提供一种高效且可靠的工具,以辅助诊断膝关节疾病,尤其关注前交叉韧带(ACL)撕裂。
KneeXNet利用图卷积网络(GCN)的能力来捕捉膝关节MRI扫描中的复杂空间依赖性和层次特征。所提出的模型由三个主要组件组成:图构建模块、图卷积层和多尺度特征融合模块。此外,采用对比学习方案来增强模型的判别能力和鲁棒性。由1370名患者的膝关节MRI扫描组成的MRNet数据集用于训练和验证KneeXNet。
使用受试者工作特征曲线下面积(AUC)指标评估KneeXNet的性能,并与包括传统机器学习方法和深度学习模型在内的最先进方法进行比较。KneeXNet始终优于竞争方法,在检测膝关节异常、ACL撕裂和半月板撕裂方面分别实现了0.985、0.972和0.968的AUC分数。跨数据集评估进一步验证了KneeXNet的泛化能力,在独立数据集上保持其卓越性能。
为了促进KneeXNet的临床应用,使用Django框架开发了一个用户友好的网络界面。该界面允许用户上传MRI扫描、查看诊断结果并与系统无缝交互。Grad-CAM可视化的集成增强了KneeXNet的可解释性,使放射科医生能够理解和验证模型的决策过程。