Suppr超能文献

基于深度学习的 1.5T 磁共振引导直线加速器伽马通过率预测系统的评估。

Assessment of the deep learning-based gamma passing rate prediction system for 1.5 T magnetic resonance-guided linear accelerator.

机构信息

Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.

Department of Radiation Technology, Tohoku University Hospital, Sendai, Japan.

出版信息

Radiol Phys Technol. 2024 Jun;17(2):451-457. doi: 10.1007/s12194-024-00800-2. Epub 2024 Apr 30.

Abstract

Measurement-based verification is impossible for the patient-specific quality assurance (QA) of online adaptive magnetic resonance imaging-guided radiotherapy (oMRgRT) because the patient remains on the couch throughout the session. We assessed a deep learning (DL) system for oMRgRT to predict the gamma passing rate (GPR). This study collected 125 verification plans [reference plan (RP), 100; adapted plan (AP), 25] from patients with prostate cancer treated using Elekta Unity. Based on our previous study, we employed a convolutional neural network that predicted the GPRs of nine pairs of gamma criteria from 1%/1 mm to 3%/3 mm. First, we trained and tested the DL model using RPs (n = 75 and n = 25 for training and testing, respectively) for its optimization. Second, we tested the GPR prediction accuracy using APs to determine whether the DL model could be applied to APs. The mean absolute error (MAE) and correlation coefficient (r) of the RPs were 1.22 ± 0.27% and 0.29 ± 0.10 in 3%/2 mm, 1.35 ± 0.16% and 0.37 ± 0.15 in 2%/2 mm, and 3.62 ± 0.55% and 0.32 ± 0.14 in 1%/1 mm, respectively. The MAE and r of the APs were 1.13 ± 0.33% and 0.35 ± 0.22 in 3%/2 mm, 1.68 ± 0.47% and 0.30 ± 0.11 in 2%/2 mm, and 5.08 ± 0.29% and 0.15 ± 0.10 in 1%/1 mm, respectively. The time cost was within 3 s for the prediction. The results suggest the DL-based model has the potential for rapid GPR prediction in Elekta Unity.

摘要

基于测量的验证对于在线自适应磁共振成像引导放射治疗(oMRgRT)的患者特异性质量保证(QA)是不可能的,因为患者在整个治疗过程中都留在治疗床上。我们评估了一种用于 oMRgRT 的深度学习(DL)系统,以预测伽马通过率(GPR)。这项研究收集了 125 份前列腺癌患者的验证计划[参考计划(RP),100 份;自适应计划(AP),25 份],这些患者使用 Elekta Unity 进行治疗。根据我们之前的研究,我们采用了卷积神经网络,该网络从 1%/1mm 到 3%/3mm 的九对伽马标准预测 GPR。首先,我们使用 RP(训练和测试分别为 75 个和 25 个)训练和测试 DL 模型,以优化模型。其次,我们使用 AP 测试 GPR 预测精度,以确定 DL 模型是否可应用于 AP。RP 的平均绝对误差(MAE)和相关系数(r)分别为 3%/2mm 时 1.22±0.27%和 0.29±0.10,2%/2mm 时 1.35±0.16%和 0.37±0.15,1%/1mm 时 3.62±0.55%和 0.32±0.14。AP 的 MAE 和 r 分别为 3%/2mm 时 1.13±0.33%和 0.35±0.22,2%/2mm 时 1.68±0.47%和 0.30±0.11,1%/1mm 时 5.08±0.29%和 0.15±0.10。预测时间不到 3 秒。结果表明,基于 DL 的模型有可能在 Elekta Unity 中快速预测 GPR。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验