Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands.
Phys Med Biol. 2021 Mar 9;66(6):065017. doi: 10.1088/1361-6560/abe3d1.
We present a robust deep learning-based framework for dose calculations of abdominal tumours in a 1.5 T MRI radiotherapy system. For a set of patient plans, a convolutional neural network is trained on the dose of individual multi-leaf-collimator segments following the DeepDose framework. It can then be used to predict the dose distribution per segment for a set of patient anatomies. The network was trained using data from three anatomical sites of the abdomen: prostate, rectal and oligometastatic tumours. A total of 216 patient fractions were used, previously treated in our clinic with fixed-beam IMRT using the Elekta MR-linac. For the purpose of training, 176 fractions were used with random gantry angles assigned to each segment, while 20 fractions were used for the validation of the network. The ground truth data were calculated with a Monte Carlo dose engine at 1% statistical uncertainty per segment. For a total of 20 independent abdominal test fractions with the clinical angles, the network was able to accurately predict the dose distributions, achieving 99.4% ± 0.6% for the whole plan prediction at the 3%/3 mm gamma test. The average dose difference and standard deviation per segment was 0.3% ± 0.7%. Additional dose prediction on one cervical and one pancreatic case yielded high dose agreement of 99.9% and 99.8% respectively for the 3%/3 mm criterion. Overall, we show that our deep learning-based dose engine calculates highly accurate dose distributions for a variety of abdominal tumour sites treated on the MR-linac, in terms of performance and generality.
我们提出了一个基于深度学习的框架,用于在 1.5 T MRI 放疗系统中计算腹部肿瘤的剂量。对于一组患者计划,根据 DeepDose 框架,在单个多叶准直器段的剂量上对卷积神经网络进行训练。然后,它可以用于预测一组患者解剖结构的每个段的剂量分布。该网络使用来自腹部三个解剖部位的数据进行训练:前列腺、直肠和寡转移瘤。共使用了 216 个患者部分,以前在我们的诊所使用 Elekta MR 直线加速器的固定束调强放疗进行治疗。为了训练目的,使用了 176 个部分,并为每个段分配了随机的旋转角度,而使用了 20 个部分来验证网络。地面真实数据是使用每个段的 1%统计不确定性的蒙特卡罗剂量引擎计算的。对于 20 个具有临床角度的独立腹部测试部分,网络能够准确地预测剂量分布,在 3%/3mmγ测试中,整个计划的预测达到 99.4%±0.6%。每个段的平均剂量差异和标准偏差为 0.3%±0.7%。对一个颈椎和一个胰腺病例的额外剂量预测分别产生了 99.9%和 99.8%的高剂量一致性,符合 3%/3mm 标准。总体而言,我们表明,我们基于深度学习的剂量引擎可以在 MR 直线加速器治疗的各种腹部肿瘤部位计算出高度准确的剂量分布,在性能和通用性方面均表现出色。