Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, United States.
Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, United States.
Elife. 2024 Apr 30;12:RP89098. doi: 10.7554/eLife.89098.
The quorum-sensing system links metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of HO, a crucial host defense against . We now report that protection by surprisingly extends beyond post-exponential growth to the exit from stationary phase when the system is no longer turned on. Thus, can be considered a constitutive protective factor. Deletion of resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δ cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the mutant than in wild-type cells, thereby explaining elevated susceptibility of Δ strains to lethal HO doses. Increased survival of wild-type cells during HO exposure required , which detoxifies superoxide. Additionally, pretreatment of with respiration-reducing menadione protected Δ cells from killing by HO. Thus, genetic deletion and pharmacologic experiments indicate that helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of -mediated protection, which is uncoupled from activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient () mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
群体感应系统将代谢与毒力联系起来,部分原因是在暴露于 HO 的致死浓度下增加了细菌的存活率,HO 是宿主防御的关键物质,可抵御 。我们现在报告称,令人惊讶的是, 保护作用不仅延伸到指数增长后期,还延伸到当 系统不再开启时的静止期退出。因此,可以将 视为组成型保护因子。尽管在适当的氧张力下呼吸或发酵率增加,但 缺失导致 ATP 水平和生长下降,这表明 Δ细胞在代谢效率降低的情况下向过度活跃的代谢状态转变。正如预期的那样,由于呼吸基因表达增加,活性氧 (ROS) 在 Δ 突变体中比在野生型细胞中积累更多,从而解释了 Δ 菌株对致死 HO 剂量的敏感性增加。在 HO 暴露期间,野生型 细胞的存活增加需要 ,它可以解毒超氧化物。此外,用呼吸还原型的 menadione 预处理 可以保护 Δ 细胞免受 HO 的杀伤。因此,遗传缺失和药理学实验表明, 有助于控制内源性 ROS,从而为抵御外源性 ROS 提供了弹性。 - 介导的保护的“记忆”持久不衰,与 激活动力学解耦,在产生 ROS 的野生型小鼠败血症期间增加了血液传播到某些组织的程度,但在缺乏 ROS 的 () 小鼠中则不会。这些结果表明了预期的 ROS 介导的免疫攻击的保护的重要性。群体感应的普遍性表明它可以保护许多细菌物种免受氧化损伤。
Proc Natl Acad Sci U S A. 2019-9-5
World J Microbiol Biotechnol. 2025-2-13
Antibiotics (Basel). 2024-11-25
Int J Mol Sci. 2024-11-28
Cell Host Microbe. 2023-2-8
Proc Natl Acad Sci U S A. 2022-6-7
Antimicrob Agents Chemother. 2023-5-1
Expert Rev Anti Infect Ther. 2021-5