文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

原核基因表达的群体感应系统对致死性氧化应激的保护作用。

Quorum-sensing system of primes gene expression for protection from lethal oxidative stress.

机构信息

Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, United States.

Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, United States.

出版信息

Elife. 2024 Apr 30;12:RP89098. doi: 10.7554/eLife.89098.


DOI:10.7554/eLife.89098
PMID:38687677
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11060713/
Abstract

The quorum-sensing system links metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of HO, a crucial host defense against . We now report that protection by surprisingly extends beyond post-exponential growth to the exit from stationary phase when the system is no longer turned on. Thus, can be considered a constitutive protective factor. Deletion of resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δ cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the mutant than in wild-type cells, thereby explaining elevated susceptibility of Δ strains to lethal HO doses. Increased survival of wild-type cells during HO exposure required , which detoxifies superoxide. Additionally, pretreatment of with respiration-reducing menadione protected Δ cells from killing by HO. Thus, genetic deletion and pharmacologic experiments indicate that helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of -mediated protection, which is uncoupled from activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient () mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.

摘要

群体感应系统将代谢与毒力联系起来,部分原因是在暴露于 HO 的致死浓度下增加了细菌的存活率,HO 是宿主防御的关键物质,可抵御 。我们现在报告称,令人惊讶的是, 保护作用不仅延伸到指数增长后期,还延伸到当 系统不再开启时的静止期退出。因此,可以将 视为组成型保护因子。尽管在适当的氧张力下呼吸或发酵率增加,但 缺失导致 ATP 水平和生长下降,这表明 Δ细胞在代谢效率降低的情况下向过度活跃的代谢状态转变。正如预期的那样,由于呼吸基因表达增加,活性氧 (ROS) 在 Δ 突变体中比在野生型细胞中积累更多,从而解释了 Δ 菌株对致死 HO 剂量的敏感性增加。在 HO 暴露期间,野生型 细胞的存活增加需要 ,它可以解毒超氧化物。此外,用呼吸还原型的 menadione 预处理 可以保护 Δ 细胞免受 HO 的杀伤。因此,遗传缺失和药理学实验表明, 有助于控制内源性 ROS,从而为抵御外源性 ROS 提供了弹性。 - 介导的保护的“记忆”持久不衰,与 激活动力学解耦,在产生 ROS 的野生型小鼠败血症期间增加了血液传播到某些组织的程度,但在缺乏 ROS 的 () 小鼠中则不会。这些结果表明了预期的 ROS 介导的免疫攻击的保护的重要性。群体感应的普遍性表明它可以保护许多细菌物种免受氧化损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/1b5ace3e5c58/elife-89098-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/1c9589b5616e/elife-89098-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/709c7c511a2f/elife-89098-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/6bdd397f101d/elife-89098-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/e06889e21b9c/elife-89098-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/eba26935b829/elife-89098-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/094504145aad/elife-89098-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/00709a5b7d8d/elife-89098-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/21bc19a74366/elife-89098-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/0c04e314a0f5/elife-89098-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/fc6db3cf5618/elife-89098-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/41c407b4f94b/elife-89098-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/e0e28f39a4e3/elife-89098-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/f6191a5bd3b2/elife-89098-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/0cd134cc59c3/elife-89098-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/916d4b0d02c7/elife-89098-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/8bc8aba6498f/elife-89098-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/ad50fcaf1a82/elife-89098-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/250268ffea51/elife-89098-fig8-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/6a12b51272a3/elife-89098-fig8-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/ddf9e02ffef1/elife-89098-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/e93f6eb65a82/elife-89098-fig9-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/cb872950fdf4/elife-89098-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/1b5ace3e5c58/elife-89098-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/1c9589b5616e/elife-89098-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/709c7c511a2f/elife-89098-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/6bdd397f101d/elife-89098-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/e06889e21b9c/elife-89098-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/eba26935b829/elife-89098-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/094504145aad/elife-89098-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/00709a5b7d8d/elife-89098-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/21bc19a74366/elife-89098-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/0c04e314a0f5/elife-89098-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/fc6db3cf5618/elife-89098-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/41c407b4f94b/elife-89098-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/e0e28f39a4e3/elife-89098-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/f6191a5bd3b2/elife-89098-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/0cd134cc59c3/elife-89098-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/916d4b0d02c7/elife-89098-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/8bc8aba6498f/elife-89098-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/ad50fcaf1a82/elife-89098-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/250268ffea51/elife-89098-fig8-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/6a12b51272a3/elife-89098-fig8-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/ddf9e02ffef1/elife-89098-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/e93f6eb65a82/elife-89098-fig9-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/cb872950fdf4/elife-89098-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df89/11060713/1b5ace3e5c58/elife-89098-fig11.jpg

相似文献

[1]
Quorum-sensing system of primes gene expression for protection from lethal oxidative stress.

Elife. 2024-4-30

[2]
Quorum-sensing system of primes gene expression for protection from lethal oxidative stress.

bioRxiv. 2024-2-28

[3]
Tuning of the Lethal Response to Multiple Stressors with a Single-Site Mutation during Clinical Infection by .

mBio. 2017-10-24

[4]
Oxidative stress drives the selection of quorum sensing mutants in the population.

Proc Natl Acad Sci U S A. 2019-9-5

[5]
Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance.

PLoS Pathog. 2014-6-12

[6]
Antibiotic-mediated selection of quorum-sensing-negative Staphylococcus aureus.

mBio. 2013-1-2

[7]
Quorum Sensing, Virulence, and Antibiotic Resistance of USA100 Methicillin-Resistant Staphylococcus aureus Isolates.

mSphere. 2019-8-14

[8]
Nox2 modification of LDL is essential for optimal apolipoprotein B-mediated control of agr type III Staphylococcus aureus quorum-sensing.

PLoS Pathog. 2013-2-14

[9]
Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus.

J Bacteriol. 2012-3-30

[10]
Inactivation of traP has no effect on the agr quorum-sensing system or virulence of Staphylococcus aureus.

Infect Immun. 2007-9

引用本文的文献

[1]
A combination of phenotypic responses and genetic adaptations enables to withstand inhibitory molecules secreted by .

mSystems. 2025-7-31

[2]
Toxic Shock Syndrome Toxin-1 (TSST-1) in : Prevalence, Molecular Mechanisms, and Public Health Implications.

Toxins (Basel). 2025-6-24

[3]
Vancomycin-Loaded Isogenous Membrane Vesicles for Macrophage Activation and Intracellular Methicillin-Resistant Elimination.

Int J Nanomedicine. 2025-6-17

[4]
Genomic insights into the spread of methicillin-resistant Staphylococcus aureus involved in ear infections.

BMC Infect Dis. 2025-5-6

[5]
Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial.

PLoS Genet. 2025-3-7

[6]
Dual RNA-seq reveals the complement protein C3-mediated host-pathogen interaction in the brain abscess caused by .

mSystems. 2025-3-18

[7]
Molecular structural arrangement in quorum sensing and bacterial metabolic production.

World J Microbiol Biotechnol. 2025-2-13

[8]
Survival Strategies of : Adaptive Regulation of the Anti-Restriction Gene -H1 Under Stress Conditions.

Antibiotics (Basel). 2024-11-25

[9]
Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities.

Int J Mol Sci. 2024-11-28

[10]
Impact of acidic and alkaline conditions on Staphylococcus aureus and Acinetobacter baumannii interactions and their biofilms.

Arch Microbiol. 2024-10-8

本文引用的文献

[1]
MRSA lineage USA300 isolated from bloodstream infections exhibit altered virulence regulation.

Cell Host Microbe. 2023-2-8

[2]
Moxifloxacin-Mediated Killing of Mycobacterium tuberculosis Involves Respiratory Downshift, Reductive Stress, and Accumulation of Reactive Oxygen Species.

Antimicrob Agents Chemother. 2022-9-20

[3]
A broadly applicable, stress-mediated bacterial death pathway regulated by the phosphotransferase system (PTS) and the cAMP-Crp cascade.

Proc Natl Acad Sci U S A. 2022-6-7

[4]
The Intersection of the Staphylococcus aureus Rex and SrrAB Regulons: an Example of Metabolic Evolution That Maximizes Resistance to Immune Radicals.

mBio. 2021-12-21

[5]
Inhibitors of bacterial HS biogenesis targeting antibiotic resistance and tolerance.

Science. 2021-6-11

[6]
Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing.

Infect Immun. 2021-7-15

[7]
The promises and limitations of acetylcysteine as a potentiator of first-line and second-line tuberculosis drugs.

Antimicrob Agents Chemother. 2023-5-1

[8]
Bacterial death from treatment with fluoroquinolones and other lethal stressors.

Expert Rev Anti Infect Ther. 2021-5

[9]
Assessment of transcriptomic constraint-based methods for central carbon flux inference.

PLoS One. 2020-9-9

[10]
Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection.

Nat Microbiol. 2019-12-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索