Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.
Mol Pharm. 2012 Nov 5;9(11):3375-83. doi: 10.1021/mp3004176. Epub 2012 Sep 27.
Development of nonviral particles for gene delivery requires a greater understanding of the properties that enable gene delivery particles to overcome the numerous barriers to intracellular DNA delivery. Linear poly(beta-amino) esters (PBAE) have shown substantial promise for gene delivery, but the mechanism behind their effectiveness is not well quantified with respect to these barriers. In this study, we synthesized, characterized, and evaluated for gene delivery an array of linear PBAEs that differed by small changes along the backbone, side chain, and end group of the polymers. We examined particle size and surface charge, polymer molecular weight, polymer degradation rate, buffering capacity, cellular uptake, transfection, and cytotoxicity of nanoparticles formulated with these polymers. Significantly, this is the first study that has quantified how small differential structural changes to polymers of this class modulate buffering capacity and polymer degradation rate and relates these findings to gene delivery efficacy. All polymers formed positively charged (zeta potential 21-29 mV) nanosized particles (∼150 nm). The polymers hydrolytically degraded quickly in physiological conditions, with half-lives ranging from 90 min to 6 h depending on polymer structure. The PBAE buffering capacities in the relevant pH range (pH 5.1-7.4) varied from 34% to 95% protonatable amines, and on a per mass basis, PBAEs buffered 1.4-4.6 mmol of H(+)/g. When compared to 25 kDa branched polyethyleneimine (PEI), PBAEs buffer significantly fewer protons/mass, as PEI buffers 6.2 mmol of H(+)/g over the same range. However, due to the relatively low cytotoxicity of PBAEs, higher polymer mass can be used to form particles than with PEI and total buffering capacity of PBAE-based particles significantly exceeds that of PEI. Uptake into COS-7 cells ranged from 0% to 95% of cells and transfection ranged from 0% to 93% of cells, depending on the base polymer structure and the end modifications examined. Five polymers achieved higher uptake and transfection efficacy with less toxicity than branched-PEI control. Surprisingly, acrylate-terminated base polymers were dramatically less efficacious than their end-capped versions, in terms of both uptake (1-3% for acrylate, 75-94% for end-capped) and transfection efficacy (0-1% vs 20-89%), even though there are minimal differences between acrylate and end-capped polymers in terms of DNA retardation in gel electrophoresis, particle size, zeta potential, and cytotoxicity. These studies further elucidate the role of polymer structure for gene delivery and highlight that small molecule end-group modification of a linear polymer can be critical for cellular uptake in a manner that is largely independent of polymer/DNA binding, particle size, and particle surface charge.
为了实现基因传递,需要开发非病毒颗粒,这就要求我们更深入地了解使基因传递颗粒能够克服细胞内 DNA 传递的众多障碍的特性。线性聚(β-氨基酯)(PBAE)在基因传递方面显示出巨大的应用前景,但它们的有效性机制在很大程度上尚未针对这些障碍进行量化。在这项研究中,我们合成、表征并评估了一系列线性 PBAE,这些 PBAE 在聚合物主链、侧链和端基上发生了微小的变化。我们研究了这些聚合物形成的纳米颗粒的粒径和表面电荷、聚合物分子量、聚合物降解率、缓冲能力、细胞摄取、转染和细胞毒性。重要的是,这是第一项定量研究此类聚合物的微小结构变化如何调节缓冲能力和聚合物降解率,并将这些发现与基因传递效率联系起来的研究。所有聚合物都形成带正电的(ζ电位 21-29 mV)纳米颗粒(约 150nm)。聚合物在生理条件下迅速发生水解降解,半衰期根据聚合物结构的不同而在 90 分钟至 6 小时之间。在相关的 pH 范围(pH 5.1-7.4)内,PBAE 的缓冲能力为 34%-95%可质子化的胺,并且按质量计,PBAE 缓冲 1.4-4.6mmol 的 H(+)/g。与 25kDa 支化聚乙烯亚胺(PEI)相比,PBAE 缓冲质子的数量要少得多,因为在相同范围内,PEI 缓冲 6.2mmol 的 H(+)/g。然而,由于 PBAE 的相对低细胞毒性,可以使用比 PEI 更高的聚合物质量来形成颗粒,并且 PBAE 基颗粒的总缓冲能力大大超过 PEI。COS-7 细胞的摄取率在 0%-95%之间,转染率在 0%-93%之间,具体取决于基础聚合物结构和所研究的末端修饰。与支化-PEI 对照相比,五种聚合物的毒性更低,摄取和转染效率更高。令人惊讶的是,与端封版本相比,末端封端的丙烯酸酯基聚合物在摄取(丙烯酸酯为 1-3%,端封端为 75-94%)和转染效率(0-1%对 20-89%)方面的效率都明显降低,尽管在凝胶电泳中 DNA 阻滞、粒径、ζ 电位和细胞毒性方面,丙烯酸酯和端封聚合物之间几乎没有差异。这些研究进一步阐明了聚合物结构在基因传递中的作用,并强调了线性聚合物小分子端基修饰对于细胞摄取的重要性,这种方式在很大程度上独立于聚合物/DNA 结合、颗粒大小和颗粒表面电荷。