Suppr超能文献

基于挤出增材制造的碳基压阻聚合物纳米复合材料:工艺、材料设计及当前进展

Carbon-Based Piezoresistive Polymer Nanocomposites by Extrusion Additive Manufacturing: Process, Material Design, and Current Progress.

作者信息

Banks James D, Emami Anahita

机构信息

Materials Science, Engineering, & Commercialization, Ingram School of Engineering, Texas State University, San Marcos, Texas, USA.

Mechanical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas, USA.

出版信息

3D Print Addit Manuf. 2024 Apr 1;11(2):e548-e571. doi: 10.1089/3dp.2022.0153. Epub 2024 Apr 16.

Abstract

Advancement in additive manufacturing (AM) allows the production of nanocomposites with complex and custom geometries not typically allowable with conventional manufacturing techniques. The benefits of AM have led to recent interest in producing multifunctional materials capable of being printed with current AM technologies. In this article, piezoresistive composites realized by AM and the matrices and fillers utilized to make such devices are introduced and discussed. Carbon-based nanoparticles (Carbon Nanotubes, Graphene/Graphite, and Carbon Black) are often the filler choice of most researchers and are heavily discussed throughout this review in combination with extrusion AM methods. Piezoresistive applications such as physiological and wearable sensors, structural health monitoring, and soft robotics are presented with an emphasis on material and AM selection to meet the demands of such applications.

摘要

增材制造(AM)的进步使得能够生产具有复杂和定制几何形状的纳米复合材料,而传统制造技术通常无法实现这些形状。AM的优势引发了人们最近对生产能够用当前AM技术进行打印的多功能材料的兴趣。在本文中,将介绍并讨论通过AM实现的压阻复合材料以及用于制造此类器件的基体和填料。碳基纳米颗粒(碳纳米管、石墨烯/石墨和炭黑)通常是大多数研究人员的填料选择,并且在本综述中结合挤出AM方法进行了大量讨论。本文介绍了压阻应用,如生理和可穿戴传感器、结构健康监测和软机器人技术,并重点强调了材料和AM选择,以满足此类应用的需求。

相似文献

1
Carbon-Based Piezoresistive Polymer Nanocomposites by Extrusion Additive Manufacturing: Process, Material Design, and Current Progress.
3D Print Addit Manuf. 2024 Apr 1;11(2):e548-e571. doi: 10.1089/3dp.2022.0153. Epub 2024 Apr 16.
3
Material Extrusion Additive Manufacturing of Wood and Lignocellulosic Filled Composites.
Polymers (Basel). 2020 Sep 17;12(9):2115. doi: 10.3390/polym12092115.
6
3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications.
Materials (Basel). 2023 Aug 18;16(16):5681. doi: 10.3390/ma16165681.
8
Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities.
ACS Appl Polym Mater. 2021 Jun 11;3(6):2865-2883. doi: 10.1021/acsapm.1c00252. Epub 2021 Jun 1.
9
3D-Printable Carbon Nanotubes-Based Composite for Flexible Piezoresistive Sensors.
Materials (Basel). 2020 Dec 1;13(23):5482. doi: 10.3390/ma13235482.
10
Advancements in carbon nanotube-polymer composites: Enhancing properties and applications through advanced manufacturing techniques.
Heliyon. 2024 Aug 16;10(16):e36490. doi: 10.1016/j.heliyon.2024.e36490. eCollection 2024 Aug 30.

引用本文的文献

1

本文引用的文献

1
Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality.
Nanoscale Adv. 2019 May 8;1(6):2337-2347. doi: 10.1039/c9na00176j. eCollection 2019 Jun 11.
2
Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities.
ACS Appl Polym Mater. 2021 Jun 11;3(6):2865-2883. doi: 10.1021/acsapm.1c00252. Epub 2021 Jun 1.
4
Recent Trends and Innovation in Additive Manufacturing of Soft Functional Materials.
Materials (Basel). 2021 Aug 12;14(16):4521. doi: 10.3390/ma14164521.
5
Effects of 3D Printing-Line Directions for Stretchable Sensor Performances.
Materials (Basel). 2021 Apr 5;14(7):1791. doi: 10.3390/ma14071791.
6
3D-Printable Carbon Nanotubes-Based Composite for Flexible Piezoresistive Sensors.
Materials (Basel). 2020 Dec 1;13(23):5482. doi: 10.3390/ma13235482.
9
A high performance wearable strain sensor with advanced thermal management for motion monitoring.
Nat Commun. 2020 Jul 15;11(1):3530. doi: 10.1038/s41467-020-17301-6.
10
Design and Development of a Fully Printed Accelerometer with a Carbon Paste-Based Strain Gauge.
Sensors (Basel). 2020 Jun 16;20(12):3395. doi: 10.3390/s20123395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验