Suppr超能文献

一种用于玉米叶片图像多类别病害分类的多尺度特征融合神经网络。

A multi-scale feature fusion neural network for multi-class disease classification on the maize leaf images.

作者信息

Liu Liangliang, Qiao Shixin, Chang Jing, Ding Weiwei, Xu Cifu, Gu Jiamin, Sun Tong, Qiao Hongbo

机构信息

College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China.

College of Agriculture, Shihezi University, Shihezi, Xinjiang 832061, PR China.

出版信息

Heliyon. 2024 Mar 20;10(7):e28264. doi: 10.1016/j.heliyon.2024.e28264. eCollection 2024 Apr 15.

Abstract

Maize is a globally important cereal crop, however, maize leaf disease is one of the most common and devastating diseases that afflict it. Artificial intelligence methods face challenges in identifying and classifying maize leaf diseases due to variations in image quality, similarity among diseases, disease severity, limited dataset availability, and limited interpretability. To address these challenges, we propose a residual-based multi-scale network (MResNet) for classifying multi-type maize leaf diseases from maize images. MResNet consists of two residual subnets with different scales, enabling the model to detect diseases in maize leaf images at different scales. We further utilize a hybrid feature weight optimization method to optimize and fuse the feature mapping weights of two subnets. We validate MResNet on a maize leaf diseases dataset. MResNet achieves 97.45% accuracy. The performance of MResNet surpasses other state-of-the-art methods. Various experiments and two additional datasets confirm the generalization performance of our model. Furthermore, thermodynamic diagram analysis increases the interpretability of the model. This study provides technical support for the disease classification of agricultural plants.

摘要

玉米是一种全球重要的谷类作物,然而,玉米叶部病害是困扰它的最常见且具有毁灭性的病害之一。由于图像质量的变化、病害之间的相似性、病害严重程度、可用数据集有限以及可解释性有限,人工智能方法在识别和分类玉米叶部病害方面面临挑战。为应对这些挑战,我们提出了一种基于残差的多尺度网络(MResNet),用于从玉米图像中对多种类型的玉米叶部病害进行分类。MResNet由两个不同尺度的残差子网组成,使模型能够在不同尺度上检测玉米叶图像中的病害。我们进一步利用一种混合特征权重优化方法来优化和融合两个子网的特征映射权重。我们在一个玉米叶部病害数据集上对MResNet进行了验证。MResNet的准确率达到了97.45%。MResNet的性能超过了其他现有最先进的方法。各种实验和另外两个数据集证实了我们模型的泛化性能。此外,热力图分析提高了模型的可解释性。本研究为农业植物病害分类提供了技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2351/11059414/72b57526dba0/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验