Suppr超能文献

基于弱监督学习的玉米叶斑病分类与定位

Classification and localization of maize leaf spot disease based on weakly supervised learning.

作者信息

Yang Shuai, Xing Ziyao, Wang Hengbin, Gao Xiang, Dong Xinrui, Yao Yu, Zhang Runda, Zhang Xiaodong, Li Shaoming, Zhao Yuanyuan, Liu Zhe

机构信息

College of Land Science and Technology, China Agricultural University, Beijing, China.

Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture and Rural Affairs, Beijing, China.

出版信息

Front Plant Sci. 2023 May 8;14:1128399. doi: 10.3389/fpls.2023.1128399. eCollection 2023.

Abstract

Precisely discerning disease types and vulnerable areas is crucial in implementing effective monitoring of crop production. This forms the basis for generating targeted plant protection recommendations and automatic, precise applications. In this study, we constructed a dataset comprising six types of field maize leaf images and developed a framework for classifying and localizing maize leaf diseases. Our approach involved integrating lightweight convolutional neural networks with interpretable AI algorithms, which resulted in high classification accuracy and fast detection speeds. To evaluate the performance of our framework, we tested the mean Intersection over Union (mIoU) of localized disease spot coverage and actual disease spot coverage when relying solely on image-level annotations. The results showed that our framework achieved a mIoU of up to 55.302%, indicating the feasibility of using weakly supervised semantic segmentation based on class activation mapping techniques for identifying disease spots in crop disease detection. This approach, which combines deep learning models with visualization techniques, improves the interpretability of the deep learning models and achieves successful localization of infected areas of maize leaves through weakly supervised learning. The framework allows for smart monitoring of crop diseases and plant protection operations using mobile phones, smart farm machines, and other devices. Furthermore, it offers a reference for deep learning research on crop diseases.

摘要

准确识别病害类型和易发病区域对于实施有效的作物生产监测至关重要。这是生成针对性植保建议和自动精准施药的基础。在本研究中,我们构建了一个包含六种田间玉米叶片图像类型的数据集,并开发了一个用于玉米叶片病害分类和定位的框架。我们的方法是将轻量级卷积神经网络与可解释人工智能算法相结合,从而实现了高分类准确率和快速检测速度。为了评估我们框架的性能,我们仅依靠图像级注释测试了局部病害斑覆盖区域与实际病害斑覆盖区域的平均交并比(mIoU)。结果表明,我们的框架实现了高达55.302%的mIoU,表明基于类激活映射技术的弱监督语义分割用于作物病害检测中识别病害斑的可行性。这种将深度学习模型与可视化技术相结合的方法提高了深度学习模型的可解释性,并通过弱监督学习成功实现了玉米叶片感染区域的定位。该框架允许使用手机、智能农场机器和其他设备对作物病害和植保作业进行智能监测。此外,它为作物病害的深度学习研究提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f374/10201986/46980eb66fcd/fpls-14-1128399-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验