Suppr超能文献

eLIMS:基于集成学习的质谱成像空间分割方法,以探索代谢异质性。

eLIMS: Ensemble Learning-Based Spatial Segmentation of Mass Spectrometry Imaging to Explore Metabolic Heterogeneity.

机构信息

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.

Interdisciplinary Institute of Medical Engineering, Fuzhou University, Fuzhou 350108, China.

出版信息

J Proteome Res. 2024 Aug 2;23(8):3088-3095. doi: 10.1021/acs.jproteome.3c00764. Epub 2024 May 1.

Abstract

Spatial segmentation is an essential processing method for image analysis aiming to identify the characteristic suborgans or microregions from mass spectrometry imaging (MSI) data, which is critical for understanding the spatial heterogeneity of biological information and function and the underlying molecular signatures. Due to the intrinsic characteristics of MSI data including spectral nonlinearity, high-dimensionality, and large data size, the common segmentation methods lack the capability for capturing the accurate microregions associated with biological functions. Here we proposed an ensemble learning-based spatial segmentation strategy, named eLIMS, that combines a randomized unified manifold approximation and projection (r-UMAP) dimensionality reduction module for extracting significant features and an ensemble pixel clustering module for aggregating the clustering maps from r-UMAP. Three MSI datasets are used to evaluate the performance of eLIMS, including mouse fetus, human adenocarcinoma, and mouse brain. Experimental results demonstrate that the proposed method has potential in partitioning the heterogeneous tissues into several subregions associated with anatomical structure, i.e., the suborgans of the brain region in mouse fetus data are identified as dorsal pallium, midbrain, and brainstem. Furthermore, it effectively discovers critical microregions related to physiological and pathological variations offering new insight into metabolic heterogeneity.

摘要

空间分割是图像分析的一种基本处理方法,旨在从质谱成像(MSI)数据中识别出特征性的子器官或微区,这对于理解生物信息和功能的空间异质性以及潜在的分子特征至关重要。由于 MSI 数据具有光谱非线性、高维度和大数据量等固有特性,常见的分割方法缺乏捕获与生物学功能相关的准确微区的能力。在这里,我们提出了一种基于集成学习的空间分割策略,称为 eLIMS,它结合了随机统一流形逼近和投影(r-UMAP)降维模块来提取显著特征,以及一个集成像素聚类模块来聚合 r-UMAP 的聚类图。我们使用三个 MSI 数据集来评估 eLIMS 的性能,包括小鼠胚胎、人类腺癌和小鼠大脑。实验结果表明,该方法具有将异质组织分割成与解剖结构相关的几个子区域的潜力,即识别出小鼠胚胎数据中大脑区域的背侧皮质、中脑和脑干等子器官。此外,它还可以有效地发现与生理和病理变化相关的关键微区,为代谢异质性提供新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验