Suppr超能文献

板层上皮细胞之间的褶皱和弯曲力。

Buckling forces and the wavy folds between pleural epithelial cells.

机构信息

Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.

Department of Computational, Engineering, and Mathematical Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA.

出版信息

Biosystems. 2024 Jun;240:105216. doi: 10.1016/j.biosystems.2024.105216. Epub 2024 Apr 29.

Abstract

Cell shapes in tissues are affected by the biophysical interaction between cells. Tissue forces can influence specific cell features such as cell geometry and cell surface area. Here, we examined the 2-dimensional shape, size, and perimeter of pleural epithelial cells at various lung volumes. We demonstrated a 1.53-fold increase in 2-dimensional cell surface area and a 1.43-fold increase in cell perimeter at total lung capacity compared to residual lung volume. Consistent with previous results, close inspection of the pleura demonstrated wavy folds between pleural epithelial cells at all lung volumes. To investigate a potential explanation for the wavy folds, we developed a physical simulacrum suggested by D'Arcy Thompson in On Growth and Form. The simulacrum suggested that the wavy folds were the result of redundant cell membranes unable to contract. To test this hypothesis, we developed a numerical simulation to evaluate the impact of an increase in 2-dimensional cell surface area and cell perimeter on the shape of the cell-cell interface. Our simulation demonstrated that an increase in cell perimeter, rather than an increase in 2-dimensional cell surface area, had the most direct impact on the presence of wavy folds. We conclude that wavy folds between pleural epithelial cells reflects buckling forces arising from the excess cell perimeter necessary to accommodate visceral organ expansion.

摘要

组织中的细胞形状受细胞间的生物物理相互作用影响。组织力可以影响特定的细胞特征,如细胞几何形状和细胞表面积。在这里,我们研究了不同肺容量下胸膜上皮细胞的 2 维形状、大小和周长。与残气量相比,我们发现在总肺活量时,2 维细胞表面积增加了 1.53 倍,细胞周长增加了 1.43 倍。与之前的结果一致,对胸膜的仔细检查表明,在所有肺容量下,胸膜上皮细胞之间都有波浪状褶皱。为了探究波浪状褶皱的潜在原因,我们根据达西·汤普森在《论生长和形态》中提出的物理模拟来进行研究。模拟表明,波浪状褶皱是由于冗余的细胞膜无法收缩而产生的。为了验证这一假设,我们开发了一个数值模拟来评估 2 维细胞表面积和细胞周长增加对细胞-细胞界面形状的影响。我们的模拟表明,细胞周长的增加,而不是 2 维细胞表面积的增加,对波浪状褶皱的存在有最直接的影响。我们得出结论,胸膜上皮细胞之间的波浪状褶皱反映了内脏器官扩张所需的多余细胞周长引起的屈曲力。

相似文献

1
Buckling forces and the wavy folds between pleural epithelial cells.
Biosystems. 2024 Jun;240:105216. doi: 10.1016/j.biosystems.2024.105216. Epub 2024 Apr 29.
2
Topography of pleural epithelial structure enabled by en face isolation and machine learning.
J Cell Physiol. 2023 Jan;238(1):274-284. doi: 10.1002/jcp.30927. Epub 2022 Dec 11.
3
Buckling of an Epithelium Growing under Spherical Confinement.
Dev Cell. 2020 Sep 14;54(5):655-668.e6. doi: 10.1016/j.devcel.2020.07.019. Epub 2020 Aug 14.
4
Evolving topological order in the postnatal visceral pleura.
Dev Dyn. 2024 Aug;253(8):711-721. doi: 10.1002/dvdy.688. Epub 2024 Jan 3.
5
A mechanical transition from tension to buckling underlies the jigsaw puzzle shape morphogenesis of histoblasts in the Drosophila epidermis.
PLoS Biol. 2024 Jun 13;22(6):e3002662. doi: 10.1371/journal.pbio.3002662. eCollection 2024 Jun.
6
'The Forms of Tissues, or Cell-aggregates': D'Arcy Thompson's influence and its limits.
Development. 2017 Dec 1;144(23):4226-4237. doi: 10.1242/dev.151233.
7
Pleural liquid and surface pressures at various lung volumes.
Respir Physiol. 1980 Mar;39(3):315-26. doi: 10.1016/0034-5687(80)90063-8.
8
On Buckling Morphogenesis.
J Biomech Eng. 2016 Feb;138(2):021005. doi: 10.1115/1.4032128.
9
Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape.
J Appl Physiol (1985). 2009 Sep;107(3):912-20. doi: 10.1152/japplphysiol.00324.2009. Epub 2009 Jul 9.
10
Tug of war--the influence of opposing physical forces on epithelial cell morphology.
Dev Biol. 2015 May 1;401(1):92-102. doi: 10.1016/j.ydbio.2014.12.030. Epub 2015 Jan 7.

本文引用的文献

1
Geometric and network organization of visceral organ epithelium.
Front Netw Physiol. 2023 May 10;3:1144186. doi: 10.3389/fnetp.2023.1144186. eCollection 2023.
2
Topography of pleural epithelial structure enabled by en face isolation and machine learning.
J Cell Physiol. 2023 Jan;238(1):274-284. doi: 10.1002/jcp.30927. Epub 2022 Dec 11.
3
Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis.
Small. 2022 Feb;18(6):e2103466. doi: 10.1002/smll.202103466. Epub 2021 Nov 26.
4
A novel jamming phase diagram links tumor invasion to non-equilibrium phase separation.
iScience. 2021 Oct 12;24(11):103252. doi: 10.1016/j.isci.2021.103252. eCollection 2021 Nov 19.
5
Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells.
Annu Rev Plant Biol. 2021 Jun 17;72:525-550. doi: 10.1146/annurev-arplant-080720-081920.
6
Mesopolysaccharides: The extracellular surface layer of visceral organs.
PLoS One. 2020 Sep 17;15(9):e0238798. doi: 10.1371/journal.pone.0238798. eCollection 2020.
7
Ruffles and spikes: Control of tight junction morphology and permeability by claudins.
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183339. doi: 10.1016/j.bbamem.2020.183339. Epub 2020 May 7.
8
SGEF forms a complex with Scribble and Dlg1 and regulates epithelial junctions and contractility.
J Cell Biol. 2019 Aug 5;218(8):2699-2725. doi: 10.1083/jcb.201811114. Epub 2019 Jun 27.
9
The Claudins: From Tight Junctions to Biological Systems.
Trends Biochem Sci. 2019 Feb;44(2):141-152. doi: 10.1016/j.tibs.2018.09.008. Epub 2018 Oct 25.
10
Pavement cells and the topology puzzle.
Development. 2017 Dec 1;144(23):4386-4397. doi: 10.1242/dev.157073. Epub 2017 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验