Chen Xue-Guang, Lin Linhan, Huang Guan-Yao, Chen Xiao-Mei, Li Xiao-Ze, Zhou Yun-Ke, Zou Yixuan, Fu Tairan, Li Peng, Li Zhengcao, Sun Hong-Bo
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Haidian, Beijing, 100084, China.
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China.
Nat Commun. 2024 May 1;15(1):3677. doi: 10.1038/s41467-024-48110-w.
Crystallization is a fundamental phenomenon which describes how the atomic building blocks such as atoms and molecules are arranged into ordered or quasi-ordered structure and form solid-state materials. While numerous studies have focused on the nucleation behavior, the precise and spatiotemporal control of growth kinetics, which dictates the defect density, the micromorphology, as well as the properties of the grown materials, remains elusive so far. Herein, we propose an optical strategy, termed optofluidic crystallithography (OCL), to solve this fundamental problem. Taking halide perovskites as an example, we use a laser beam to manipulate the molecular motion in the native precursor environment and create inhomogeneous spatial distribution of the molecular species. Harnessing the coordinated effect of laser-controlled local supersaturation and interfacial energy, we precisely steer the ionic reaction at the growth interface and directly print arbitrary single crystals of halide perovskites of high surface quality, crystallinity, and uniformity at a high printing speed of 10 μm s. The OCL technique can be potentially extended to the fabrication of single-crystal structures beyond halide perovskites, once crystallization can be triggered under the laser-directed local supersaturation.
结晶是一种基本现象,它描述了诸如原子和分子等原子构建单元如何排列成有序或准有序结构并形成固态材料。虽然众多研究聚焦于成核行为,但生长动力学的精确时空控制,即决定所生长材料的缺陷密度、微观形态以及性质的因素,至今仍难以捉摸。在此,我们提出一种光学策略,称为光流体结晶光刻(OCL),以解决这一基本问题。以卤化物钙钛矿为例,我们使用激光束在原生前驱体环境中操纵分子运动,并创建分子物种的非均匀空间分布。利用激光控制的局部过饱和度和界面能的协同效应,我们精确引导生长界面处的离子反应,并以10μm/s的高打印速度直接打印出具有高表面质量、结晶度和均匀性的卤化物钙钛矿任意单晶。一旦在激光引导的局部过饱和度下能够引发结晶,OCL技术有可能扩展到卤化物钙钛矿以外的单晶结构制造。