Suppr超能文献

卷积神经网络在Transformer时代的新应用。

Novel applications of Convolutional Neural Networks in the age of Transformers.

作者信息

Ersavas Tansel, Smith Martin A, Mattick John S

机构信息

School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.

Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.

出版信息

Sci Rep. 2024 May 1;14(1):10000. doi: 10.1038/s41598-024-60709-z.

Abstract

Convolutional Neural Networks (CNNs) have been central to the Deep Learning revolution and played a key role in initiating the new age of Artificial Intelligence. However, in recent years newer architectures such as Transformers have dominated both research and practical applications. While CNNs still play critical roles in many of the newer developments such as Generative AI, they are far from being thoroughly understood and utilised to their full potential. Here we show that CNNs can recognise patterns in images with scattered pixels and can be used to analyse complex datasets by transforming them into pseudo images with minimal processing for any high dimensional dataset, representing a more general approach to the application of CNNs to datasets such as in molecular biology, text, and speech. We introduce a pipeline called DeepMapper, which allows analysis of very high dimensional datasets without intermediate filtering and dimension reduction, thus preserving the full texture of the data, enabling detection of small variations normally deemed 'noise'. We demonstrate that DeepMapper can identify very small perturbations in large datasets with mostly random variables, and that it is superior in speed and on par in accuracy to prior work in processing large datasets with large numbers of features.

摘要

卷积神经网络(CNNs)一直是深度学习革命的核心,并在开启人工智能新时代方面发挥了关键作用。然而,近年来,诸如Transformer等更新的架构在研究和实际应用中占据了主导地位。虽然卷积神经网络在诸如生成式人工智能等许多新发展中仍然发挥着关键作用,但它们远未得到充分理解,也未被充分发挥其潜力。在此,我们表明卷积神经网络可以识别具有分散像素的图像中的模式,并且可以通过将任何高维数据集以最少的处理转换为伪图像来分析复杂数据集,这代表了一种将卷积神经网络应用于分子生物学、文本和语音等数据集的更通用方法。我们引入了一种名为DeepMapper的流程,它允许在不进行中间过滤和降维的情况下分析非常高维的数据集,从而保留数据的完整纹理,能够检测通常被视为“噪声”的微小变化。我们证明,DeepMapper可以识别大多具有随机变量的大型数据集中非常小的扰动,并且在处理具有大量特征的大型数据集时,它在速度上优于先前的工作,在准确性上与先前的工作相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cdc/11063149/31bf235dd035/41598_2024_60709_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验