Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia.
St-Vincent's Clinical School, UNSW Sydney, Darlinghurst 2066, NSW, Australia.
Genome Res. 2020 Sep;30(9):1345-1353. doi: 10.1101/gr.260836.120. Epub 2020 Sep 9.
Nanopore sequencing enables direct measurement of RNA molecules without conversion to cDNA, thus opening the gates to a new era for RNA biology. However, the lack of molecular barcoding of direct RNA nanopore sequencing data sets severely affects the applicability of this technology to biological samples, where RNA availability is often limited. Here, we provide the first experimental protocol and associated algorithm to barcode and demultiplex direct RNA nanopore sequencing data sets. Specifically, we present a novel and robust approach to accurately classify raw nanopore signal data by transforming current intensities into images or arrays of pixels, followed by classification using a deep learning algorithm. We demonstrate the power of this strategy by developing the first experimental protocol for barcoding and demultiplexing direct RNA sequencing libraries. Our method, DeePlexiCon, can classify 93% of reads with 95.1% accuracy or 60% of reads with 99.9% accuracy. The availability of an efficient and simple multiplexing strategy for native RNA sequencing will improve the cost-effectiveness of this technology, as well as facilitate the analysis of lower-input biological samples. Overall, our work exemplifies the power, simplicity, and robustness of signal-to-image conversion for nanopore data analysis using deep learning.
纳米孔测序能够直接测量 RNA 分子,而无需转化为 cDNA,从而为 RNA 生物学开启了一个新时代。然而,直接 RNA 纳米孔测序数据集缺乏分子条形码,严重影响了该技术在生物样本中的适用性,因为 RNA 的可用性通常有限。在这里,我们提供了第一个用于对直接 RNA 纳米孔测序数据集进行标记和多路分解的实验方案和相关算法。具体来说,我们提出了一种新颖而稳健的方法,通过将当前强度转换为图像或像素阵列,然后使用深度学习算法对原始纳米孔信号数据进行精确分类,从而准确地对原始纳米孔信号数据进行分类。我们通过开发第一个用于标记和多路分解直接 RNA 测序文库的实验方案来证明这种策略的强大功能。我们的方法 DeePlexiCon 可以以 95.1%的准确率对 93%的读数进行分类,或以 99.9%的准确率对 60%的读数进行分类。用于天然 RNA 测序的高效且简单的多路复用策略的可用性将提高该技术的成本效益,并促进对低输入生物样本的分析。总体而言,我们的工作展示了使用深度学习对纳米孔数据分析进行信号到图像转换的强大功能、简单性和稳健性。