Schalenbach Maximilian, Selmert Victor, Kretzschmar Ansgar, Raijmakers Luc, Durmus Yasin Emre, Tempel Hermann, Eichel Rüdiger-A
Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
Institute of Physical Chemistry, RWTH Aachen University, 52062 Aachen, Germany.
Phys Chem Chem Phys. 2024 May 15;26(19):14288-14304. doi: 10.1039/d3cp04743a.
Varying the electrode potential rearranges the charges in the double layer (DL) of an electrochemical interface by a resistive-capacitive current response. The capacitances of such charge relocations are frequently used in the research community to estimate electrochemical active surface areas (ECSAs), yet the reliability of this methodology is insufficiently examined. Here, the relation of capacitances and ECSAs is critically assessed with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) data on polished (Au, Ti, Ru, Pt, Ni, glassy carbon, graphite plate) and porous (carbon fleeces) electrodes. By investigating this variety of electrodes, the frequency-dependencies observed in the measured capacitances are shown to arise from the inherent resistive-capacitive DL response, charge transfer reactions, and resistively damped capacitive currents in microstructures (such as pores, pinholes, or cracks). These frequency-dependencies are typically overlooked when capacitances are related to ECSAs. The capacitance at the specimen-characteristic relaxation frequency of the resistive-capacitive DL response is proposed as a standardized capacitance-metric to estimate ECSAs. In 1 M perchloric acid, the polished gold electrode and the high-surface area carbon fleeces show ratios of capacitance-metric over surface-area of around 3.7 μF cm. Resistively damped currents in microstructures and low-conducting oxide layers are shown to complicate trustworthy capacitance-based estimations of ECSAs. In the second part of this study, advanced equivalent circuits models to describe the measured EIS and CV responses are presented.
通过电阻 - 电容电流响应改变电极电位会重新排列电化学界面双层(DL)中的电荷。这种电荷重新分布的电容在研究界经常用于估计电化学活性表面积(ECSA),然而这种方法的可靠性尚未得到充分检验。在此,利用电化学阻抗谱(EIS)和循环伏安法(CV)数据,对抛光电极(金、钛、钌、铂、镍、玻碳、石墨板)和多孔电极(碳毡)上的电容与ECSA之间的关系进行了严格评估。通过研究各种电极,发现测量电容中观察到的频率依赖性源于固有的电阻 - 电容双层响应、电荷转移反应以及微观结构(如孔隙、针孔或裂纹)中的电阻性阻尼电容电流。当电容与ECSA相关时,这些频率依赖性通常被忽略。提出将电阻 - 电容双层响应的样品特征弛豫频率下的电容作为估计ECSA的标准化电容指标。在1 M高氯酸中,抛光金电极和高表面积碳毡的电容指标与表面积之比约为3.7 μF/cm。研究表明,微观结构中的电阻性阻尼电流和低导电氧化层会使基于电容的可靠ECSA估计变得复杂。在本研究的第二部分,提出了用于描述测量的EIS和CV响应的先进等效电路模型。