Suppr超能文献

一种用于量化制造过程中智能眼镜风险的综合STPA-PSO框架。

A comprehensive STPA-PSO framework for quantifying smart glasses risks in manufacturing.

作者信息

Karevan Ali, Nadeau Sylvie

机构信息

École de technologie supérieure, Mechanical Engineering Department, Montréal, Quebec H3C 1K3, Canada.

出版信息

Heliyon. 2024 Apr 23;10(9):e30162. doi: 10.1016/j.heliyon.2024.e30162. eCollection 2024 May 15.

Abstract

The integration of cutting-edge technologies, such as wearables, in complex systems is crucial for enhancing collaboration between humans and machines in the era of Industry 5.0. However, this increased interaction also introduces new challenges and risks, including the potential for human errors. A thorough analysis of the literature reveals an absence of studies that have quantified these risks, underscoring the utmost importance of this research. To address the above gap, the present study introduces the STPA-PSO methodology, which aims to quantify the risks associated with the use of smart glasses in complex systems, with a specific focus on human error risks. The proposed methodology leverages the Systems-Theoretic Process Analysis (STPA) approach to proactively identify hazards, while harnessing the power of the Particle Swarm Optimization (PSO) algorithm to accurately calculate and optimize risks, including those related to human errors. To validate the effectiveness of the methodology, a case study involving the assembly of a refrigerator was conducted, encompassing various critical aspects, such as the Industrial, Financial, and Occupational Health and Safety (OHS) aspects. The results provide evidence of the efficacy of the STPA-PSO approach in assessing, quantifying, and managing risks during the design stage. By proposing a robust and comprehensive risk quantification framework, this study makes a significant contribution to the advancement of system safety analysis in complex environments, providing invaluable insights for the seamless integration of wearables and ensuring safer interactions between humans and machines.

摘要

将可穿戴设备等前沿技术集成到复杂系统中,对于在工业5.0时代加强人机协作至关重要。然而,这种增加的交互也带来了新的挑战和风险,包括人为错误的可能性。对文献的全面分析表明,缺乏对这些风险进行量化的研究,凸显了本研究的极端重要性。为了弥补上述差距,本研究引入了STPA-PSO方法,旨在量化复杂系统中使用智能眼镜相关的风险,特别关注人为错误风险。所提出的方法利用系统理论过程分析(STPA)方法主动识别危害,同时利用粒子群优化(PSO)算法的力量准确计算和优化风险,包括与人为错误相关的风险。为了验证该方法的有效性,进行了一个涉及冰箱组装的案例研究,涵盖了各种关键方面,如工业、财务和职业健康与安全(OHS)方面。结果证明了STPA-PSO方法在设计阶段评估、量化和管理风险方面的有效性。通过提出一个强大而全面的风险量化框架,本研究对复杂环境下系统安全分析的进展做出了重大贡献,为可穿戴设备的无缝集成提供了宝贵见解,并确保人机之间更安全的交互。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f35/11061756/7d2131cffb8e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验