Suppr超能文献

基于无人机的多光谱成像技术可用于评估高粱育种系的季节性叶面积动态变化。

Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines.

作者信息

Potgieter Andries B, George-Jaeggli Barbara, Chapman Scott C, Laws Kenneth, Suárez Cadavid Luz A, Wixted Jemima, Watson James, Eldridge Mark, Jordan David R, Hammer Graeme L

机构信息

Queensland Alliance for Agriculture and Food Innovation, University of QueenslandToowoomba, QLD, Australia.

Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia.

出版信息

Front Plant Sci. 2017 Sep 8;8:1532. doi: 10.3389/fpls.2017.01532. eCollection 2017.

Abstract

Genetic improvement in sorghum breeding programs requires the assessment of adaptation traits in small-plot breeding trials across multiple environments. Many of these phenotypic assessments are made by manual measurement or visual scoring, both of which are time consuming and expensive. This limits trial size and the potential for genetic gain. In addition, these methods are typically restricted to point estimates of particular traits, such as leaf senescence or flowering and do not capture the dynamic nature of crop growth. In water-limited environments in particular, information on leaf area development over time would provide valuable insight into water use and adaptation to water scarcity during specific phenological stages of crop development. Current methods to estimate plant leaf area index (LAI) involve destructive sampling and are not practical in breeding. Unmanned aerial vehicles (UAV) and proximal-sensing technologies open new opportunities to assess these traits multiple times in large small-plot trials. We analyzed vegetation-specific crop indices obtained from a narrowband multi-spectral camera on board a UAV platform flown over a small pilot trial with 30 plots (10 genotypes randomized within 3 blocks). Due to variable emergence we were able to assess the utility of these vegetation indices to estimate canopy cover and LAI over a large range of plant densities. We found good correlations between the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) with plant number per plot, canopy cover and LAI both during the vegetative growth phase (pre-anthesis) and at maximum canopy cover shortly after anthesis. We also analyzed the utility of time-sequence data to assess the senescence pattern of sorghum genotypes known as fast (senescent) or slow senescing (stay-green) types. The Normalized Difference Red Edge (NDRE) index which estimates leaf chlorophyll content was most useful in characterizing the leaf area dynamics/senescence patterns of contrasting genotypes. These methods to monitor dynamics of green and senesced leaf area are suitable for out-scaling to enhance phenotyping of additional crop canopy characteristics and likely crop yield responses among genotypes across large fields and multiple dates.

摘要

高粱育种计划中的遗传改良需要在多个环境中的小区育种试验中评估适应性性状。许多这些表型评估是通过人工测量或视觉评分进行的,这两种方法都既耗时又昂贵。这限制了试验规模和遗传增益的潜力。此外,这些方法通常仅限于对特定性状的点估计,例如叶片衰老或开花,并且无法捕捉作物生长的动态特性。特别是在水分受限的环境中,关于叶面积随时间发展的信息将为作物发育特定物候阶段的水分利用和对缺水的适应性提供有价值的见解。目前估计植物叶面积指数(LAI)的方法涉及破坏性采样,在育种中不实用。无人机(UAV)和近距离传感技术为在大型小区试验中多次评估这些性状提供了新机会。我们分析了从无人机平台上的窄带多光谱相机获得的特定植被作物指数,该无人机平台飞越了一个有30个小区的小型试验田(10个基因型在3个区组内随机排列)。由于出苗情况不同,我们能够评估这些植被指数在大范围植物密度下估计冠层覆盖和叶面积指数的效用。我们发现归一化差异植被指数(NDVI)和增强植被指数(EVI)与每个小区的植株数量、冠层覆盖和叶面积指数在营养生长阶段(开花前)以及开花后不久冠层覆盖最大时都有良好的相关性。我们还分析了时间序列数据在评估高粱基因型衰老模式的效用,这些基因型分为快速(衰老)或缓慢衰老(持绿)类型。估计叶片叶绿素含量的归一化差异红边(NDRE)指数在表征不同基因型的叶面积动态/衰老模式方面最有用。这些监测绿叶和衰老叶面积动态的方法适用于扩大规模,以增强对其他作物冠层特征以及不同基因型在大田中多个日期可能的作物产量反应的表型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/798b/5599772/32d81394c0b9/fpls-08-01532-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验