Suppr超能文献

利用图神经网络对多晶氧化铪相场铁电滞后进行超快且准确的预测。

Ultrafast and accurate prediction of polycrystalline hafnium oxide phase-field ferroelectric hysteresis using graph neural networks.

作者信息

Kévin Alhada-Lahbabi, Damien Deleruyelle, Brice Gautier

机构信息

INSA Lyon, Ecole Centrale de Lyon, CNRS, Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270 69622 Villeurbanne France

出版信息

Nanoscale Adv. 2024 Apr 2;6(9):2350-2362. doi: 10.1039/d3na01115a. eCollection 2024 Apr 30.

Abstract

Polycrystalline hafnium oxide emerges as a promising material for the future of nanoelectronic devices. While phase-field modeling stands as a primary choice tool for forecasting domain structure evolution and electromechanical properties of ferroelectric materials, it suffers from a high computational cost, which impedes its applicability to real-size systems. Here, we propose a Graph Neural Network (GNN) machine-learning framework to predict the ferroelectric hysteresis of polycrystalline hafnium oxide, with the goal of significantly accelerating computations in contrast to high-fidelity phase-field methods. By leveraging the inherent graph structure of the polycrystalline system and incorporating edge-level feature properties through graph attentional layers, our approach accurately predicts hysteresis behaviors across a broad range of polycrystalline structures, grain numbers, and Landau coefficients. The GNN framework exhibits high accuracy, with an average relative error of ∼4%, and demonstrates remarkable computational efficiency with respect to ground truth phase-field simulations, offering speed-ups exceeding a million-fold. Furthermore, we showcase the transferability of our model to efficiently scale predictions in polycrystals comprising up to a thousand grains, paving the way for effective simulations of real-sized systems. Our approach, by overcoming computational limitations in polycrystalline hafnium oxide, opens doors for accelerating discovery and design in ferroelectric materials.

摘要

多晶氧化铪成为未来纳米电子器件的一种有前景的材料。虽然相场建模是预测铁电材料畴结构演变和机电性能的主要选择工具,但它存在计算成本高的问题,这阻碍了其在实际尺寸系统中的应用。在此,我们提出一种图神经网络(GNN)机器学习框架来预测多晶氧化铪的铁电滞回特性,目的是与高保真相场方法相比显著加速计算。通过利用多晶系统的固有图结构并通过图注意力层纳入边级特征属性,我们的方法能准确预测广泛的多晶结构、晶粒数量和朗道系数下的滞回行为。该GNN框架具有高精度,平均相对误差约为4%,并且相对于实际的相场模拟展现出显著的计算效率,加速倍数超过一百万倍。此外,我们展示了我们模型的可转移性,能够有效地扩展到对包含多达一千个晶粒的多晶的预测,为实际尺寸系统的有效模拟铺平了道路。我们的方法通过克服多晶氧化铪中的计算限制,为加速铁电材料的发现和设计打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a63e/11059552/ca3a2a68d181/d3na01115a-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验