Wang Qi, Zhang Longfei
Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, Sichuan, China.
School of Software, Beihang University, Beijing, China.
Nat Commun. 2021 Sep 9;12(1):5359. doi: 10.1038/s41467-021-25490-x.
Directly manipulating the atomic structure to achieve a specific property is a long pursuit in the field of materials. However, hindered by the disordered, non-prototypical glass structure and the complex interplay between structure and property, such inverse design is dauntingly hard for glasses. Here, combining two cutting-edge techniques, graph neural networks and swap Monte Carlo, we develop a data-driven, property-oriented inverse design route that managed to improve the plastic resistance of Cu-Zr metallic glasses in a controllable way. Swap Monte Carlo, as a sampler, effectively explores the glass landscape, and graph neural networks, with high regression accuracy in predicting the plastic resistance, serves as a decider to guide the search in configuration space. Via an unconventional strengthening mechanism, a geometrically ultra-stable yet energetically meta-stable state is unraveled, contrary to the common belief that the higher the energy, the lower the plastic resistance. This demonstrates a vast configuration space that can be easily overlooked by conventional atomistic simulations. The data-driven techniques, structural search methods and optimization algorithms consolidate to form a toolbox, paving a new way to the design of glassy materials.
直接操纵原子结构以实现特定性能是材料领域长期以来的追求。然而,由于无序的、非典型的玻璃结构以及结构与性能之间复杂的相互作用,这种逆向设计对于玻璃来说极具挑战性。在此,我们结合两种前沿技术——图神经网络和交换蒙特卡罗方法,开发了一种数据驱动、面向性能的逆向设计路线,成功以可控方式提高了Cu-Zr金属玻璃的抗塑性。交换蒙特卡罗作为采样器,有效地探索了玻璃态空间,而在预测抗塑性方面具有高回归精度的图神经网络则作为决策者,指导在构型空间中的搜索。通过一种非常规的强化机制,揭示了一种几何上超稳定但能量上亚稳定的状态,这与通常认为能量越高抗塑性越低的观点相反。这表明存在一个传统原子模拟容易忽略的巨大构型空间。数据驱动技术、结构搜索方法和优化算法相结合形成了一个工具箱,为玻璃材料的设计开辟了一条新途径。