文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

程序化动态组织的4D生物打印

4D bioprinting of programmed dynamic tissues.

作者信息

Lai Jiahui, Liu Yuwei, Lu Gang, Yung Patrick, Wang Xiaoying, Tuan Rocky S, Li Zhong Alan

机构信息

Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China.

Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China.

出版信息

Bioact Mater. 2024 Apr 23;37:348-377. doi: 10.1016/j.bioactmat.2024.03.033. eCollection 2024 Jul.


DOI:10.1016/j.bioactmat.2024.03.033
PMID:38694766
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11061618/
Abstract

Setting time as the fourth dimension, 4D printing allows us to construct dynamic structures that can change their shape, property, or functionality over time under stimuli, leading to a wave of innovations in various fields. Recently, 4D printing of smart biomaterials, biological components, and living cells into dynamic living 3D constructs with 4D effects has led to an exciting field of 4D bioprinting. 4D bioprinting has gained increasing attention and is being applied to create programmed and dynamic cell-laden constructs such as bone, cartilage, and vasculature. This review presents an overview on 4D bioprinting for engineering dynamic tissues and organs, followed by a discussion on the approaches, bioprinting technologies, smart biomaterials and smart design, bioink requirements, and applications. While much progress has been achieved, 4D bioprinting as a complex process is facing challenges that need to be addressed by transdisciplinary strategies to unleash the full potential of this advanced biofabrication technology. Finally, we present future perspectives on the rapidly evolving field of 4D bioprinting, in view of its potential, increasingly important roles in the development of advanced dynamic tissues for basic research, pharmaceutics, and regenerative medicine.

摘要

将时间作为第四维度,4D打印使我们能够构建动态结构,这些结构在刺激下可随时间改变其形状、性质或功能,从而在各个领域引发了一波创新浪潮。最近,将智能生物材料、生物组件和活细胞进行4D打印,制成具有4D效果的动态活体3D构建体,催生了一个令人兴奋的4D生物打印领域。4D生物打印越来越受到关注,并正被应用于创建诸如骨骼、软骨和脉管系统等程序化的、动态的、含有细胞的构建体。本文综述了用于工程化动态组织和器官的4D生物打印,随后讨论了其方法、生物打印技术、智能生物材料与智能设计、生物墨水要求及应用。尽管已取得了很大进展,但4D生物打印作为一个复杂过程,仍面临着一些挑战,需要通过跨学科策略来解决,以充分发挥这种先进生物制造技术的潜力。最后,鉴于4D生物打印在基础研究、制药和再生医学等先进动态组织开发中具有的潜力和日益重要的作用,我们阐述了这个快速发展领域的未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/ce6e3b56e914/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/a4f439fd3d1f/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/a5aa1bc54bff/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/4a34fa687c2d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/f9ccdc246ef3/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/c2ae0690ebfa/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/7f635d070324/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/6ce6f8de356e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/430b76c75159/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/4319ae2475ee/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/e30b9157eb2c/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/5224fa61ded0/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/da846d2f97ee/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/aabc21d79c7d/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/26963014ba4e/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/1b34c9cb3d50/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/358ef40fbd02/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/a6ab8f443a23/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/900ed3addb9f/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/15caead86219/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/ce6e3b56e914/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/a4f439fd3d1f/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/a5aa1bc54bff/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/4a34fa687c2d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/f9ccdc246ef3/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/c2ae0690ebfa/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/7f635d070324/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/6ce6f8de356e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/430b76c75159/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/4319ae2475ee/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/e30b9157eb2c/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/5224fa61ded0/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/da846d2f97ee/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/aabc21d79c7d/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/26963014ba4e/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/1b34c9cb3d50/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/358ef40fbd02/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/a6ab8f443a23/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/900ed3addb9f/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/15caead86219/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/11061618/ce6e3b56e914/gr19.jpg

相似文献

[1]
4D bioprinting of programmed dynamic tissues.

Bioact Mater. 2024-4-23

[2]
Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.

Acta Biomater. 2019-10-28

[3]
Smart biomaterials: From 3D printing to 4D bioprinting.

Methods. 2022-9

[4]
4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications.

Biofabrication. 2024-2-9

[5]
Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics.

Small. 2022-9

[6]
4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

Biofabrication. 2016-12-2

[7]
Translational biomaterials of four-dimensional bioprinting for tissue regeneration.

Biofabrication. 2023-10-9

[8]
Recent Advances in 4D Bioprinting.

Biotechnol J. 2019-9-20

[9]
[4D bioprinting technology and its application in cardiovascular tissue engineering].

Sheng Wu Gong Cheng Xue Bao. 2023-10-25

[10]
Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.

Acta Biomater. 2021-9-15

引用本文的文献

[1]
3D bioprinting patient-specific grafts for tendon/ligament repair in motion: emerging trends and challenges.

Front Bioeng Biotechnol. 2025-8-22

[2]
The role of 3D printing in skeletal muscle-on-a-chip models: Current applications and future potential.

Mater Today Bio. 2025-8-20

[3]
Forkhead box O proteins in chondrocyte aging and diseases.

J Orthop Translat. 2025-8-10

[4]
Applications in osteochondral organoids for osteoarthritis research: from pathomimetic modeling to tissue engineering repair.

Front Bioeng Biotechnol. 2025-7-23

[5]
Transformative bioprinting: 4D printing and its role in the evolution of engineering and personalized medicine.

Discov Nano. 2025-7-23

[6]
Stimuli-responsive hybrid materials for 4D tissue models.

Mater Today Bio. 2025-7-2

[7]
Novel Soft Dosage Forms for Paediatric Applications: Can We 3D-Print Them or Not?

Gels. 2025-3-8

[8]
Biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage in chondral and osteochondral defects.

Bioact Mater. 2024-10-11

[9]
4D printing polymeric biomaterials for adaptive tissue regeneration.

Bioact Mater. 2025-2-22

[10]
Environmental stimuli-responsive hydrogels in endodontics: Advances and perspectives.

Int Endod J. 2025-5

本文引用的文献

[1]
Magnetically driven formation of 3D freestanding soft bioscaffolds.

Sci Adv. 2024-2-2

[2]
Multilayered Shape-Morphing Scaffolds with a Hierarchical Structure for Uterine Tissue Regeneration.

ACS Appl Mater Interfaces. 2024-2-14

[3]
Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing.

Science. 2023-12-8

[4]
Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration.

Nat Commun. 2023-11-27

[5]
Vision-controlled jetting for composite systems and robots.

Nature. 2023-11

[6]
Advances in volumetric bioprinting.

Biofabrication. 2023-11-28

[7]
Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds.

Nanomicro Lett. 2023-10-31

[8]
Collagen fibril-like injectable hydrogels from self-assembled nanoparticles for promoting wound healing.

Bioact Mater. 2023-10-6

[9]
Multimaterial 3D and 4D Bioprinting of Heterogenous Constructs for Tissue Engineering.

Adv Mater. 2024-8

[10]
Shape memory polymer with programmable recovery onset.

Nature. 2023-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索