Suppr超能文献

基于T1加权灰质和基于动脉自旋标记的脑血流网络指标对自闭症谱系障碍儿童进行诊断。

Diagnosis for autism spectrum disorder children using T1-based gray matter and arterial spin labeling-based cerebral blood flow network metrics.

作者信息

Liu Mingyang, Yu Weibo, Xu Dandan, Wang Miaoyan, Peng Bo, Jiang Haoxiang, Dai Yakang

机构信息

School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China.

Department of Radiology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China.

出版信息

Front Neurosci. 2024 Apr 17;18:1356241. doi: 10.3389/fnins.2024.1356241. eCollection 2024.

Abstract

INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in motor skills, communication, emotional expression, and social interaction. Accurate diagnosis of ASD remains challenging due to the reliance on subjective behavioral observations and assessment scales, lacking objective diagnostic indicators.

METHODS

In this study, we introduced a novel approach for diagnosing ASD, leveraging T1-based gray matter and ASL-based cerebral blood flow network metrics. Thirty preschool-aged patients with ASD and twenty-two typically developing (TD) individuals were enrolled. Brain network features, including gray matter and cerebral blood flow metrics, were extracted from both T1-weighted magnetic resonance imaging (MRI) and ASL images. Feature selection was performed using statistical -tests and Minimum Redundancy Maximum Relevance (mRMR). A machine learning model based on random vector functional link network was constructed for diagnosis.

RESULTS

The proposed approach demonstrated a classification accuracy of 84.91% in distinguishing ASD from TD. Key discriminating network features were identified in the inferior frontal gyrus and superior occipital gyrus, regions critical for social and executive functions in ASD patients.

DISCUSSION

Our study presents an objective and effective approach to the clinical diagnosis of ASD, overcoming the limitations of subjective behavioral observations. The identified brain network features provide insights into the neurobiological mechanisms underlying ASD, potentially leading to more targeted interventions.

摘要

引言

自闭症谱系障碍(ASD)是一种复杂的神经发育疾病,其特征在于运动技能、沟通、情感表达和社交互动方面的损伤。由于依赖主观行为观察和评估量表,缺乏客观诊断指标,ASD的准确诊断仍然具有挑战性。

方法

在本研究中,我们引入了一种诊断ASD的新方法,利用基于T1的灰质和基于动脉自旋标记(ASL)的脑血流网络指标。招募了30名学龄前ASD患者和22名发育正常(TD)个体。从T1加权磁共振成像(MRI)和ASL图像中提取包括灰质和脑血流指标在内的脑网络特征。使用统计检验和最小冗余最大相关性(mRMR)进行特征选择。构建基于随机向量功能链接网络的机器学习模型用于诊断。

结果

所提出的方法在区分ASD和TD方面表现出84.91%的分类准确率。在额下回和枕上回中识别出关键的鉴别网络特征,这些区域对ASD患者的社交和执行功能至关重要。

讨论

我们的研究提出了一种客观有效的ASD临床诊断方法,克服了主观行为观察的局限性。所识别的脑网络特征为ASD潜在的神经生物学机制提供了见解,可能会带来更具针对性的干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验