Suppr超能文献

结合结构和功能磁共振成像信息提高自闭症谱系障碍的检测。

Improving the detection of autism spectrum disorder by combining structural and functional MRI information.

机构信息

Computer Vision and Robotics Group, University of Girona, Catalonia, Spain.

Computer Vision and Robotics Group, University of Girona, Catalonia, Spain.

出版信息

Neuroimage Clin. 2020;25:102181. doi: 10.1016/j.nicl.2020.102181. Epub 2020 Jan 17.

Abstract

Autism Spectrum Disorder (ASD) is a brain disorder that is typically characterized by deficits in social communication and interaction, as well as restrictive and repetitive behaviors and interests. During the last years, there has been an increase in the use of magnetic resonance imaging (MRI) to help in the detection of common patterns in autism subjects versus typical controls for classification purposes. In this work, we propose a method for the classification of ASD patients versus control subjects using both functional and structural MRI information. Functional connectivity patterns among brain regions, together with volumetric correspondences of gray matter volumes among cortical parcels are used as features for functional and structural processing pipelines, respectively. The classification network is a combination of stacked autoencoders trained in an unsupervised manner and multilayer perceptrons trained in a supervised manner. Quantitative analysis is performed on 817 cases from the multisite international Autism Brain Imaging Data Exchange I (ABIDE I) dataset, consisting of 368 ASD patients and 449 control subjects and obtaining a classification accuracy of 85.06 ± 3.52% when using an ensemble of classifiers. Merging information from functional and structural sources significantly outperforms the implemented individual pipelines.

摘要

自闭症谱系障碍 (ASD) 是一种大脑疾病,其典型特征通常是社交沟通和互动方面的缺陷,以及限制和重复的行为和兴趣。在过去的几年中,磁共振成像 (MRI) 的使用有所增加,以帮助检测自闭症患者与典型对照组之间的常见模式,以便进行分类。在这项工作中,我们提出了一种使用功能和结构 MRI 信息对 ASD 患者与对照进行分类的方法。脑区之间的功能连接模式,以及皮质区之间灰质体积的容积对应关系,分别作为功能和结构处理管道的特征。分类网络是一种经过无监督方式训练的堆叠自动编码器和经过监督方式训练的多层感知器的组合。在使用集成分类器时,对来自多站点国际自闭症脑成像数据交换 I (ABIDE I) 数据集的 817 例进行了定量分析,其中包括 368 名 ASD 患者和 449 名对照,获得了 85.06 ± 3.52%的分类准确性。融合功能和结构信息的方法明显优于实现的各个管道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d853/6994708/5afd0abb5bce/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验