Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
Biochem Soc Trans. 2024 Jun 26;52(3):1317-1325. doi: 10.1042/BST20231106.
Ribosomes are universally conserved cellular machines that catalyze protein biosynthesis. The active sites underly immense evolutionary conservation resulting in virtually identical core structures of ribosomes in all domains of life including organellar ribosomes. However, more peripheral structures of cytosolic ribosomes changed during evolution accommodating new functions and regulatory options. The expansion occurred at the riboprotein level, including more and larger ribosomal proteins and at the RNA level increasing the length of ribosomal RNA. Expansions within the ribosomal RNA occur as clusters at conserved sites that face toward the periphery of the cytosolic ribosome. Recent biochemical and structural work has shed light on how rRNA-specific expansion segments (ESs) recruit factors during translation and how they modulate translation dynamics in the cytosol. Here we focus on recent work on yeast, human and trypanosomal cytosolic ribosomes that explores the role of two specific rRNA ESs within the small and large subunit respectively. While no single regulatory strategy exists, the absence of ESs has consequences for proteomic stability and cellular fitness, rendering them fascinating evolutionary tools for tailored protein biosynthesis.
核糖体是普遍存在的细胞机器,催化蛋白质生物合成。活性部位具有巨大的进化保守性,导致所有生命领域的核糖体(包括细胞器核糖体)的核心结构几乎完全相同。然而,胞质核糖体的更外围结构在进化过程中发生了变化,以适应新的功能和调节选择。这种扩张发生在核糖体蛋白水平上,包括更多和更大的核糖体蛋白,以及在 RNA 水平上增加核糖体 RNA 的长度。核糖体 RNA 内部的扩张发生在保守位点的簇中,这些位点朝向胞质核糖体的外围。最近的生化和结构研究揭示了 rRNA 特异性扩展片段 (ES) 在翻译过程中如何招募因子,以及它们如何调节细胞质中的翻译动力学。在这里,我们重点介绍最近关于酵母、人类和原生动物胞质核糖体的工作,这些工作探讨了小亚基和大亚基中两个特定 rRNA ES 的作用。虽然不存在单一的调节策略,但 ES 的缺失会对蛋白质组的稳定性和细胞适应性产生影响,使它们成为定制蛋白质生物合成的迷人进化工具。