Rauscher Robert, Eggers Cristian, Dimitrova-Paternoga Lyudmila, Shankar Vaishnavi, Rosina Alessia, Cristodero Marina, Paternoga Helge, Wilson Daniel N, Leidel Sebastian A, Polacek Norbert
Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
Nucleic Acids Res. 2024 Apr 24;52(7):4021-4036. doi: 10.1093/nar/gkae067.
Ribosome-enhanced translational miscoding of the genetic code causes protein dysfunction and loss of cellular fitness. During evolution, open reading frame length increased, necessitating mechanisms for enhanced translation fidelity. Indeed, eukaryal ribosomes are more accurate than bacterial counterparts, despite their virtually identical, conserved active centers. During the evolution of eukaryotic organisms ribosome expansions at the rRNA and protein level occurred, which potentially increases the options for translation regulation and cotranslational events. Here we tested the hypothesis that ribosomal RNA expansions can modulate the core function of the ribosome, faithful protein synthesis. We demonstrate that a short expansion segment present in all eukaryotes' small subunit, ES7S, is crucial for accurate protein synthesis as its presence adjusts codon-specific velocities and guarantees high levels of cognate tRNA selection. Deletion of ES7S in yeast enhances mistranslation and causes protein destabilization and aggregation, dramatically reducing cellular fitness. Removal of ES7S did not alter ribosome architecture but altered the structural dynamics of inter-subunit bridges thus affecting A-tRNA selection. Exchanging the yeast ES7S sequence with the human ES7S increases accuracy whereas shortening causes the opposite effect. Our study demonstrates that ES7S provided eukaryal ribosomes with higher accuracy without perturbing the structurally conserved decoding center.
核糖体增强的遗传密码翻译错编会导致蛋白质功能障碍和细胞适应性丧失。在进化过程中,开放阅读框长度增加,因此需要提高翻译保真度的机制。实际上,真核生物核糖体比细菌核糖体更精确,尽管它们的活性中心几乎相同且保守。在真核生物的进化过程中,核糖体在rRNA和蛋白质水平上发生了扩展,这可能增加了翻译调控和共翻译事件的选择。在这里,我们测试了核糖体RNA扩展可以调节核糖体核心功能(即忠实的蛋白质合成)这一假设。我们证明,所有真核生物小亚基中存在的一个短扩展片段ES7S,对于精确的蛋白质合成至关重要,因为它的存在会调整密码子特异性速度,并确保高水平的同源tRNA选择。酵母中ES7S的缺失会增强错译,并导致蛋白质不稳定和聚集,显著降低细胞适应性。去除ES7S不会改变核糖体结构,但会改变亚基间桥的结构动力学,从而影响A-tRNA选择。将酵母ES7S序列与人ES7S序列交换会提高准确性,而缩短则会产生相反的效果。我们的研究表明,ES7S为真核生物核糖体提供了更高的准确性,而不会干扰结构保守的解码中心。