Suppr超能文献

用于硫还原反应的催化活性与金属中心铁原子数之间的火山型关联。

A Volcano Correlation between Catalytic Activity for Sulfur Reduction Reaction and Fe Atom Count in Metal Center.

作者信息

Cai Guolei, Lv Haifeng, Zhang Guikai, Liu Danqing, Zhang Jing, Zhu Jiawen, Xu Junjie, Kong Xianghua, Jin Song, Wu Xiaojun, Ji Hengxing

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China.

出版信息

J Am Chem Soc. 2024 May 15;146(19):13055-13065. doi: 10.1021/jacs.3c14312. Epub 2024 May 2.

Abstract

Sulfur reduction reaction (SRR) facilitates up to 16 electrons, which endows lithium-sulfur (Li-S) batteries with a high energy density that is twice that of typical Li-ion batteries. However, its sluggish reaction kinetics render batteries with only a low capacity and cycling life, thus remaining the main challenge to practical Li-S batteries, which require efficient electrocatalysts of balanced atom utilization and site-specific requirements toward highly efficient SRR, calling for an in-depth understanding of the atomic structural sensitivity for the catalytic active sites. Herein, we manipulated the number of Fe atoms in iron assemblies, ranging from single Fe atom to diatomic and triatomic Fe atom groupings, all embedded within a carbon matrix. This led to the revelation of a "volcano peak" correlation between SRR catalytic activity and the count of Fe atoms at the active sites. Utilizing X-ray absorption and X-ray diffraction spectroscopies, we observed that polysulfide adsorption-desorption and electrochemical conversion kinetics varied up and down with the incremental addition of even a single iron atom to the catalyst's metal center. Our results demonstrate that the metal center with exactly two iron atoms represents the optimal configuration, maximizing atom utility and adeptly handling the conversion of varied intermediate sulfur species, rendering the Li-S battery with a high areal capacity of 23.8 mAh cm at a high sulfur loading of 21.8 mg cm. Our results illuminate the pivotal balance between atom utilization and site-specific requirements for optimal electrocatalytic performance in SRR and diverse electrocatalytic reactions.

摘要

硫还原反应(SRR)最多可促进16个电子的转移,这赋予锂硫(Li-S)电池高能量密度,是典型锂离子电池的两倍。然而,其缓慢的反应动力学导致电池容量和循环寿命较低,这仍然是实用Li-S电池的主要挑战,实用Li-S电池需要高效的电催化剂,这种催化剂要能平衡原子利用率并满足对高效SRR的特定位置要求,这就需要深入了解催化活性位点的原子结构敏感性。在此,我们操控了铁组件中铁原子的数量,范围从单个铁原子到双原子和三原子铁原子团簇,所有这些都嵌入在碳基质中。这揭示了SRR催化活性与活性位点处铁原子数量之间的“火山峰”相关性。利用X射线吸收和X射线衍射光谱,我们观察到,即使向催化剂的金属中心仅增加一个铁原子,多硫化物的吸附-解吸和电化学转化动力学也会上下变化。我们的结果表明,恰好有两个铁原子的金属中心代表了最佳构型,可使原子利用率最大化,并能巧妙地处理各种中间硫物种的转化,从而使Li-S电池在21.8 mg cm的高硫负载下具有23.8 mAh cm的高面积容量。我们的结果阐明了在SRR和各种电催化反应中,原子利用率与特定位置要求之间对于最佳电催化性能的关键平衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验