IEEE J Biomed Health Inform. 2024 Oct;28(10):5742-5754. doi: 10.1109/JBHI.2024.3396130. Epub 2024 Oct 3.
Epilepsy is a neurological disorder characterized by abnormal neuronal discharges that manifest in life-threatening seizures. These are often monitored via EEG signals, a key aspect of biomedical signal processing (BSP). Accurate epileptic seizure (ES) detection significantly depends on the precise identification of key EEG features, which requires a deep understanding of the data's intrinsic domain. Therefore, this study presents an Advanced Multi-View Deep Feature Learning (AMV-DFL) framework based on machine learning (ML) technology to enhance the detection of relevant EEG signal features for ES. Our method initially applies a fast Fourier transform (FFT) on EEG data for traditional frequency domain feature (TFD-F) extraction and directly incorporates time domain (TD) features from the raw EEG signals, establishing a comprehensive traditional multi-view feature (TMV-F). Deep features are subsequently extracted autonomously from optimal layers of one-dimensional convolutional neural networks (1D CNN), resulting in multi-view deep features (MV-DF) integrating both time and frequency domains. A multi-view forest (MV-F) is an interpretable rule-based advanced ML classifier used to construct a robust, generalized classification. Tree-based SHAP explainable artificial intelligence (T-XAI) is incorporated for interpreting and explaining the underlying rules. Experimental results confirm our method's superiority, surpassing models using TMV-FL and single-view deep features (SV-DF) by 4% and outperforming other state-of-the-art methods by an average of 3% in classification accuracy. The AMV-DFL approach aids clinicians in identifying EEG features indicative of ES, potentially discovering novel biomarkers, and improving diagnostic capabilities in epilepsy management.
癫痫是一种以神经元异常放电为特征的神经系统疾病,表现为危及生命的癫痫发作。这些通常通过脑电图 (EEG) 信号进行监测,这是生物医学信号处理 (BSP) 的一个关键方面。准确检测癫痫发作 (ES) 严重依赖于对关键 EEG 特征的精确识别,这需要深入了解数据的内在领域。因此,本研究提出了一种基于机器学习 (ML) 技术的高级多视图深度特征学习 (AMV-DFL) 框架,以增强相关 EEG 信号特征的检测用于 ES。我们的方法首先对 EEG 数据应用快速傅里叶变换 (FFT) 以提取传统频域特征 (TFD-F),并直接从原始 EEG 信号中提取时域 (TD) 特征,建立全面的传统多视图特征 (TMV-F)。然后,从一维卷积神经网络 (1D CNN) 的最佳层自动提取深度特征,从而生成集成时间和频率域的多视图深度特征 (MV-DF)。多视图森林 (MV-F) 是一种可解释的基于规则的高级 ML 分类器,用于构建强大的、通用的分类。基于树的 SHAP 可解释人工智能 (T-XAI) 被纳入用于解释和解释底层规则。实验结果证实了我们方法的优越性,比使用 TMV-FL 和单视图深度特征 (SV-DF) 的模型分别高出 4%,比其他最先进的方法的平均分类准确率高出 3%。AMV-DFL 方法有助于临床医生识别 EEG 特征,可能发现新的生物标志物,并提高癫痫管理中的诊断能力。