Suppr超能文献

CNN-Informer:一种用于长期脑电图癫痫检测的混合深度学习模型。

CNN-Informer: A hybrid deep learning model for seizure detection on long-term EEG.

作者信息

Li Chuanyu, Li Haotian, Dong Xingchen, Zhong Xiangwen, Cui Haozhou, Ji Dezan, He Landi, Liu Guoyang, Zhou Weidong

机构信息

School of Integrated Circuits, Shandong University, Jinan 250100, PR China.

School of Integrated Circuits, Shandong University, Jinan 250100, PR China; Shenzhen Institute of Shandong University, Shenzhen 518057, PR China.

出版信息

Neural Netw. 2025 Jan;181:106855. doi: 10.1016/j.neunet.2024.106855. Epub 2024 Oct 28.

Abstract

Timely detecting epileptic seizures can significantly reduce accidental injuries of epilepsy patients and offer a novel intervention approach to improve their quality of life. Investigation on seizure detection based on deep learning models has achieved great success. However, there still remain challenging issues, such as the high computational complexity of the models and overfitting caused by the scarce availability of ictal electroencephalogram (EEG) signals for training. Therefore, we propose a novel end-to-end automatic seizure detection model named CNN-Informer, which leverages the capability of Convolutional Neural Network (CNN) to extract EEG local features of multi-channel EEGs, and the low computational complexity and memory usage ability of the Informer to capture the long-range dependencies. In view of the existence of various artifacts in long-term EEGs, we filter those raw EEGs using Discrete Wavelet Transform (DWT) before feeding them into the proposed CNN-Informer model for feature extraction and classification. Post-processing operations are further employed to achieve the final detection results. Our method is extensively evaluated on the CHB-MIT dataset and SH-SDU dataset with both segment-based and event-based criteria. The experimental outcomes demonstrate the superiority of the proposed CNN-Informer model and its strong generalization ability across two EEG datasets. In addition, the lightweight architecture of CNN-Informer makes it suitable for real-time implementation.

摘要

及时检测癫痫发作可显著减少癫痫患者的意外伤害,并提供一种新的干预方法来改善他们的生活质量。基于深度学习模型的癫痫发作检测研究已取得巨大成功。然而,仍然存在一些具有挑战性的问题,例如模型的高计算复杂度以及由于用于训练的发作期脑电图(EEG)信号稀缺而导致的过拟合。因此,我们提出了一种名为CNN-Informer的新型端到端自动癫痫发作检测模型,该模型利用卷积神经网络(CNN)提取多通道脑电图局部特征的能力,以及Informer捕获长程依赖关系的低计算复杂度和内存使用能力。鉴于长期脑电图中存在各种伪迹,我们在将原始脑电图输入所提出的CNN-Informer模型进行特征提取和分类之前,使用离散小波变换(DWT)对其进行滤波。进一步采用后处理操作来获得最终检测结果。我们的方法在CHB-MIT数据集和SH-SDU数据集上,基于基于片段和基于事件的标准进行了广泛评估。实验结果证明了所提出的CNN-Informer模型的优越性及其在两个脑电图数据集上的强大泛化能力。此外,CNN-Informer的轻量级架构使其适用于实时实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验