Suppr超能文献

数字描述符增强了经典描述符,有助于改进基因库的准入管理:以花生属和菜豆属为例

Digital descriptors sharpen classical descriptors, for improving genebank accession management: A case study on Arachis spp. and Phaseolus spp.

机构信息

Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Palmira, Valle del Cauca, Colombia.

Bean Physiology and Breeding Program, International Center for Tropical Agriculture (CIAT), Palmira, Valle del Cauca, Colombia.

出版信息

PLoS One. 2024 May 2;19(5):e0302158. doi: 10.1371/journal.pone.0302158. eCollection 2024.

Abstract

High-throughput phenotyping brings new opportunities for detailed genebank accessions characterization based on image-processing techniques and data analysis using machine learning algorithms. Our work proposes to improve the characterization processes of bean and peanut accessions in the CIAT genebank through the identification of phenomic descriptors comparable to classical descriptors including methodology integration into the genebank workflow. To cope with these goals morphometrics and colorimetry traits of 14 bean and 16 forage peanut accessions were determined and compared to the classical International Board for Plant Genetic Resources (IBPGR) descriptors. Descriptors discriminating most accessions were identified using a random forest algorithm. The most-valuable classification descriptors for peanuts were 100-seed weight and days to flowering, and for beans, days to flowering and primary seed color. The combination of phenomic and classical descriptors increased the accuracy of the classification of Phaseolus and Arachis accessions. Functional diversity indices are recommended to genebank curators to evaluate phenotypic variability to identify accessions with unique traits or identify accessions that represent the greatest phenotypic variation of the species (functional agrobiodiversity collections). The artificial intelligence algorithms are capable of characterizing accessions which reduces costs generated by additional phenotyping. Even though deep analysis of data requires new skills, associating genetic, morphological and ecogeographic diversity is giving us an opportunity to establish unique functional agrobiodiversity collections with new potential traits.

摘要

高通量表型分析为基于图像处理技术和使用机器学习算法进行数据分析的基因库访问进行详细特征描述提供了新的机会。我们的工作旨在通过将表型描述符的识别方法与包括整合到基因库工作流程中的经典描述符进行集成,来改进 CIAT 基因库中豆类和花生访问的特征描述过程。为了实现这些目标,我们测定了 14 个豆类和 16 个饲料花生访问的形态计量学和比色特征,并将其与经典的国际植物遗传资源委员会(IBPGR)描述符进行了比较。使用随机森林算法确定了区分大多数访问的描述符。对于花生,最有价值的分类描述符是百粒重和开花天数,而对于豆类,最有价值的分类描述符是开花天数和主要种子颜色。表型和经典描述符的组合提高了 Phaseolus 和 Arachis 访问的分类准确性。功能多样性指数建议基因库管理者用于评估表型变异性,以识别具有独特性状的访问或识别代表物种最大表型变异的访问(功能农业生物多样性收集)。人工智能算法能够对访问进行特征描述,从而降低额外表型分析产生的成本。尽管数据分析的深入分析需要新的技能,但关联遗传、形态和生态地理多样性为我们提供了机会,使我们能够建立具有新潜在特性的独特功能农业生物多样性收集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd5/11065210/a33859428430/pone.0302158.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验