一种用于高温逆水煤气变换反应的活性稳定立方碳化钼催化剂。

An active, stable cubic molybdenum carbide catalyst for the high-temperature reverse water-gas shift reaction.

作者信息

Ahmadi Khoshooei Milad, Wang Xijun, Vitale Gerardo, Formalik Filip, Kirlikovali Kent O, Snurr Randall Q, Pereira-Almao Pedro, Farha Omar K

机构信息

Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA.

Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

出版信息

Science. 2024 May 3;384(6695):540-546. doi: 10.1126/science.adl1260. Epub 2024 May 2.

Abstract

Although technologically promising, the reduction of carbon dioxide (CO) to produce carbon monoxide (CO) remains economically challenging owing to the lack of an inexpensive, active, highly selective, and stable catalyst. We show that nanocrystalline cubic molybdenum carbide (α-MoC), prepared through a facile and scalable route, offers 100% selectivity for CO reduction to CO while maintaining its initial equilibrium conversion at high space velocity after more than 500 hours of exposure to harsh reaction conditions at 600°C. The combination of operando and postreaction characterization of the catalyst revealed that its high activity, selectivity, and stability are attributable to crystallographic phase purity, weak CO-MoC interactions, and interstitial oxygen atoms, respectively. Mechanistic studies and density functional theory (DFT) calculations provided evidence that the reaction proceeds through an H-aided redox mechanism.

摘要

尽管在技术上很有前景,但由于缺乏廉价、活性高、选择性高且稳定的催化剂,将二氧化碳(CO₂)还原以生产一氧化碳(CO)在经济上仍然具有挑战性。我们表明,通过一种简便且可扩展的方法制备的纳米晶立方碳化钼(α-MoC),在600°C的苛刻反应条件下暴露500多个小时后,对将CO₂还原为CO具有100%的选择性,同时在高空速下保持其初始平衡转化率。对该催化剂的原位和反应后表征相结合表明,其高活性、选择性和稳定性分别归因于晶体相纯度、较弱的CO-MoC相互作用和间隙氧原子。机理研究和密度泛函理论(DFT)计算提供了证据,表明该反应通过氢辅助氧化还原机制进行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索