Suppr超能文献

在PVC层中添加石墨烯的小型喷墨打印柔性离子选择性传感电极,用于快速响应实时监测应用。

Miniaturized inkjet-printed flexible ion-selective sensing electrodes with the addition of graphene in PVC layer for fast response real-time monitoring applications.

作者信息

Tsou Kun-Lin, Cheng Yu-Ting

机构信息

Microsystems Integration Laboratory, Institute of Electronics Engineering, National Yang Ming Chiao Tung University, Taiwan, Taiwan, ROC.

Microsystems Integration Laboratory, Institute of Electronics Engineering, National Yang Ming Chiao Tung University, Taiwan, Taiwan, ROC.

出版信息

Talanta. 2024 Aug 1;275:126107. doi: 10.1016/j.talanta.2024.126107. Epub 2024 Apr 23.

Abstract

In this letter, we propose a miniaturization scheme of inkjet printed ionic sensing electrodes by adding graphene into the ion-selective PVC film not only to reduce the impedance of the ionic liquid layer of the electrode but also to increase the electrode capacitance for the reduction of the response time. Based on the scheme, we present a fully inkjet-printed electrochemical ion-selective sensor comprising a working electrode and reference electrode, which are inkjet-printed Ag NPs/PEDOT:PSS-graphene/PVC-graphene and Ag/AgCl/ionic liquid PVC-graphene layer structures, respectively. The printed ion-selective working electrode has been miniaturized to a size of 22,400 μm equivalent to a square shape of ∼150 × 150 μm comparable to the size of a human cell. By adding graphene to the ion selective PVC film, more than 90 % charge transfer resistance reduction can be achieved and the shunt capacitance is increased by 3.4-fold in shunt capacitance compared to the film without graphene, thereby more than 33 % reduction of the response time required to reach equilibrium. Meanwhile, these miniaturized potassium sensors using the working electrodes with/without adding graphene have been integrated with in-lab signal-processing and wireless-transmission module to yield similar results to the one measured by commercial electrochemical workstation showing a great potential for real-time monitoring in portable clinical trials. Specifically, the proposed sensor utilizing graphene-enhanced electrodes demonstrates a linearity uncertainty of 2.9 mV, which is approximately half of the uncertainty observed in the sensors lacking graphene integration.

摘要

在本信函中,我们提出了一种喷墨打印离子传感电极的小型化方案,即通过将石墨烯添加到离子选择性聚氯乙烯(PVC)薄膜中,不仅可以降低电极离子液体层的阻抗,还能增加电极电容以缩短响应时间。基于该方案,我们展示了一种完全喷墨打印的电化学离子选择性传感器,它包括一个工作电极和一个参比电极,分别采用喷墨打印的Ag NPs/PEDOT:PSS - 石墨烯/PVC - 石墨烯和Ag/AgCl/离子液体PVC - 石墨烯层结构。所打印的离子选择性工作电极已被小型化至等效尺寸为22400μm,相当于约150×150μm的方形,与人体细胞大小相当。通过向离子选择性PVC薄膜中添加石墨烯,与不含石墨烯的薄膜相比,电荷转移电阻降低超过90%,并联电容增加了3.4倍,从而使达到平衡所需的响应时间缩短超过33%。同时,这些使用添加/未添加石墨烯的工作电极的小型化钾传感器已与实验室内部信号处理和无线传输模块集成,得到的结果与商业电化学工作站测量的结果相似,显示出在便携式临床试验中进行实时监测的巨大潜力。具体而言,所提出的利用石墨烯增强电极的传感器展示出2.9mV的线性不确定度,这大约是未集成石墨烯的传感器中观察到的不确定度的一半。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验