含氧化石墨烯肽的材料在生物医学中的应用。

Graphene-Oxide Peptide-Containing Materials for Biomedical Applications.

机构信息

Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania.

Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania.

出版信息

Int J Mol Sci. 2024 Sep 22;25(18):10174. doi: 10.3390/ijms251810174.

Abstract

This review explores the application of graphene-based materials (GBMs) in biomedicine, focusing on graphene oxide (GO) and its interactions with peptides and proteins. GO, a versatile nanomaterial with oxygen-containing functional groups, holds significant potential for biomedical applications but faces challenges related to toxicity and environmental impact. Peptides and proteins can be functionalized on GO surfaces through various methods, including non-covalent interactions such as π-π stacking, electrostatic forces, hydrophobic interactions, hydrogen bonding, and van der Waals forces, as well as covalent bonding through reactions involving amide bond formation, esterification, thiol chemistry, and click chemistry. These approaches enhance GO's functionality in several key areas: biosensing for sensitive biomarker detection, theranostic imaging that integrates diagnostics and therapy for real-time treatment monitoring, and targeted cancer therapy where GO can deliver drugs directly to tumor sites while being tracked by imaging techniques like MRI and photoacoustic imaging. Additionally, GO-based scaffolds are advancing tissue engineering and aiding tissues' bone, muscle, and nerve tissue regeneration, while their antimicrobial properties are improving infection-resistant medical devices. Despite its potential, addressing challenges related to stability and scalability is essential to fully harness the benefits of GBMs in healthcare.

摘要

这篇综述探讨了基于石墨烯的材料(GBMs)在生物医学中的应用,重点关注氧化石墨烯(GO)及其与肽和蛋白质的相互作用。GO 是一种具有含氧官能团的多功能纳米材料,在生物医学应用中具有巨大的潜力,但面临着与毒性和环境影响相关的挑战。肽和蛋白质可以通过各种方法在 GO 表面进行功能化,包括非共价相互作用,如π-π堆积、静电力、疏水力、氢键和范德华力,以及通过涉及酰胺键形成、酯化、巯基化学和点击化学的反应进行共价键合。这些方法增强了 GO 在几个关键领域的功能:用于敏感生物标志物检测的生物传感、将诊断和治疗整合在一起以实时治疗监测的治疗诊断成像、以及靶向癌症治疗,其中 GO 可以将药物直接递送到肿瘤部位,同时可以通过 MRI 和光声成像等成像技术进行跟踪。此外,基于 GO 的支架正在推进组织工程,并有助于组织的骨骼、肌肉和神经组织再生,而其抗菌性能正在改善抗感染医疗器械。尽管具有潜力,但解决与稳定性和可扩展性相关的挑战对于充分利用 GBM 在医疗保健中的益处至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d99/11432502/de48a19c2492/ijms-25-10174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索