Department of Cell Biology, Duke University, Durham, NC 27710, USA.
Department of Biology, Duke University, Durham, NC 27708, USA.
Dev Cell. 2024 Jul 22;59(14):1860-1875.e5. doi: 10.1016/j.devcel.2024.04.013. Epub 2024 May 1.
In bony fishes, patterning of the vertebral column, or spine, is guided by a metameric blueprint established in the notochord sheath. Notochord segmentation begins days after somitogenesis concludes and can occur in its absence. However, somite patterning defects lead to imprecise notochord segmentation, suggesting that these processes are linked. Here, we identify that interactions between the notochord and the axial musculature ensure precise spatiotemporal segmentation of the zebrafish spine. We demonstrate that myoseptum-notochord linkages drive notochord segment initiation by locally deforming the notochord extracellular matrix and recruiting focal adhesion machinery at these contact points. Irregular somite patterning alters this mechanical signaling, causing non-sequential and dysmorphic notochord segmentation, leading to altered spine development. Using a model that captures myoseptum-notochord interactions, we find that a fixed spatial interval is critical for driving sequential segment initiation. Thus, mechanical coupling of axial tissues facilitates spatiotemporal spine patterning.
在硬骨鱼中,脊柱或脊椎的模式形成是由脊索鞘中建立的分节蓝图指导的。脊索分段在体节发生结束后几天开始,并且可以在没有体节的情况下发生。然而,体节模式缺陷导致脊索分段不准确,这表明这些过程是相关的。在这里,我们确定脊索和轴性肌肉组织之间的相互作用确保了斑马鱼脊柱的精确时空分段。我们证明,肌隔-脊索连接通过局部变形脊索细胞外基质并在这些接触点募集粘着斑机械装置来驱动脊索节段的起始。不规则的体节模式改变了这种机械信号,导致非顺序和畸形的脊索分段,导致脊柱发育异常。使用捕获肌隔-脊索相互作用的模型,我们发现固定的空间间隔对于驱动顺序节段起始至关重要。因此,轴向组织的机械偶联促进了时空脊柱模式形成。