Hwang Uiseok, Nam Jae-Do
Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
ACS Nano. 2024 May 14;18(19):12225-12234. doi: 10.1021/acsnano.4c00624. Epub 2024 May 2.
Radar-absorbing materials (RAMs) covering the exterior surfaces of installed parts and assembled devices are crucial in absorbing most incident electromagnetic (EM) waves. This absorption minimizes reflected energy, thereby enhancing pilot safety and the stability of operating electronic devices without interference. Particularly, active stealth aircraft require effective protection from near- and far-field EM radiation across a wide spectrum of frequencies from both highly integrated electronic components and advanced enemy radars. Studies of RAMs often prioritize absorption over crucial tunability in frequency selectivity, revealing a research gap. In this study, we propose smart RAMs with frequency-selective absorption capabilities. Our approach involves incorporating two types of core-shell spheres in a polymer matrix, which feature shells of either wave-diffuse reflecting metal or wave-absorbing graphene. The key innovation lies in the ability to tailor absorption frequencies in the X-band range (8.2-12.4 GHz) by adjusting the interstitial spaces between the metallic spheres while the scattered waves are efficiently attenuated by graphene networks in the composites. On a metal substrate, a 2 mm-thick composite with an optimized structural composition and ratio of the two types of spheres exhibits a maximum absorption efficiency of 99.3%, effectively trapping and extinguishing incident waves. Combined with the structural tunability and frequency-selective properties of spherical fillers, our approach provides a scalable and effective method for creating functional isotropic coverings on various metallic surfaces.
覆盖已安装部件和组装设备外表面的吸波材料(RAMs)对于吸收大多数入射电磁波至关重要。这种吸收可将反射能量降至最低,从而提高飞行员安全性以及操作电子设备的稳定性,且不受干扰。特别是,现役隐形飞机需要有效抵御来自高度集成电子元件和先进敌方雷达的宽频谱近场和远场电磁辐射。对吸波材料的研究通常将吸收置于频率选择性关键可调性之上,这揭示了一个研究空白。在本研究中,我们提出了具有频率选择性吸收能力的智能吸波材料。我们的方法是在聚合物基体中加入两种类型的核壳球,其壳层为波漫反射金属或吸波石墨烯。关键创新在于能够通过调整金属球之间的间隙来定制X波段范围(8.2 - 12.4 GHz)内的吸收频率,同时复合材料中的石墨烯网络能有效衰减散射波。在金属基板上,一种具有优化结构组成和两种球比例的2毫米厚复合材料展现出99.3%的最大吸收效率,能有效捕获并消除入射波。结合球形填料的结构可调性和频率选择性特性,我们的方法为在各种金属表面创建功能性各向同性覆盖层提供了一种可扩展且有效的方法。