Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada.
Physiol Rep. 2024 May;12(9):e15977. doi: 10.14814/phy2.15977.
FAM111A gene mutations cause Kenney-Caffey syndrome (KCS) and Osteocraniostenosis (OCS), conditions characterized by short stature, low serum ionized calcium (Ca), low parathyroid hormone (PTH), and bony abnormalities. The molecular mechanism mediating this phenotype is unknown. The c-terminal domain of FAM111A harbors all the known disease-causing variations and encodes a domain with high homology to serine proteases. However, whether this serine protease domain contributes to the maintenance of Ca homeostasis is not known. We hypothesized the disruption of the serine protease domain of FAM111A would disrupt Ca homeostasis. To test this hypothesis, we generated with CRISPR/Cas9, mice with a frameshift insertion (c.1450insA) or large deletion (c.1253-1464del) mutation in the Fam111a serine protease domain. Serum-ionized Ca and PTH levels were not significantly different between wild type, heterozygous, or homozygous Fam111a mutant mice. Additionally, there were no significant differences in fecal or urine Ca excretion, intestinal Ca absorption or overall Ca balance. Only female homozygous (c.1450insA), but not heterozygous mice displayed differences in bone microarchitecture and mineral density compared to wild-type animals. We conclude that frameshift mutations that disrupt the c-terminal serine protease domain do not induce a KCS or OCS phenotype in mice nor alter Ca homeostasis.
FAM111A 基因突变导致 Kenney-Caffey 综合征 (KCS) 和 Osteocraniostenosis (OCS),其特征为身材矮小、血清离子钙 (Ca) 低、甲状旁腺激素 (PTH) 低和骨骼异常。介导这种表型的分子机制尚不清楚。FAM111A 的 C 端结构域包含所有已知的致病变异,并编码与丝氨酸蛋白酶具有高度同源性的结构域。然而,该丝氨酸蛋白酶结构域是否有助于维持 Ca 稳态尚不清楚。我们假设 FAM111A 的丝氨酸蛋白酶结构域的破坏会破坏 Ca 稳态。为了验证这一假设,我们使用 CRISPR/Cas9 生成了 Fam111a 丝氨酸蛋白酶结构域中存在移码插入 (c.1450insA) 或大片段缺失 (c.1253-1464del) 突变的小鼠。野生型、杂合子或纯合 fam111a 突变小鼠的血清离子 Ca 和 PTH 水平没有显著差异。此外,粪便或尿液 Ca 排泄、肠道 Ca 吸收或整体 Ca 平衡没有显著差异。只有雌性纯合子 (c.1450insA),而不是杂合子小鼠与野生型动物相比,在骨微观结构和矿物质密度方面表现出差异。我们得出结论,破坏 C 端丝氨酸蛋白酶结构域的移码突变不会在小鼠中引起 KCS 或 OCS 表型,也不会改变 Ca 稳态。