Suppr超能文献

缺血性中风后再融入社会的社会风险预测因素。

Predictors of social risk for post-ischemic stroke reintegration.

机构信息

AIDHM, Artificial Intelligence in Digital Health and Medicine, Technological University Dublin, Dublin, Ireland.

RESQ+, Comprehensive solutions of healthcare improvement based on the global Registry of Stroke Care Quality, Horizon Europe Project, Brno, Czech Republic.

出版信息

Sci Rep. 2024 May 2;14(1):10110. doi: 10.1038/s41598-024-60507-7.

Abstract

After stroke rehabilitation, patients need to reintegrate back into their daily life, workplace and society. Reintegration involves complex processes depending on age, sex, stroke severity, cognitive, physical, as well as socioeconomic factors that impact long-term outcomes post-stroke. Moreover, post-stroke quality of life can be impacted by social risks of inadequate family, social, economic, housing and other supports needed by the patients. Social risks and barriers to successful reintegration are poorly understood yet critical for informing clinical or social interventions. Therefore, the aim of this work is to predict social risk at rehabilitation discharge using sociodemographic and clinical variables at rehabilitation admission and identify factors that contribute to this risk. A Gradient Boosting modelling methodology based on decision trees was applied to a Catalan 217-patient cohort of mostly young (mean age 52.7), male (66.4%), ischemic stroke survivors. The modelling task was to predict an individual's social risk upon discharge from rehabilitation based on 16 different demographic, diagnostic and social risk variables (family support, social support, economic status, cohabitation and home accessibility at admission). To correct for imbalance in patient sample numbers with high and low-risk levels (prediction target), five different datasets were prepared by varying the data subsampling methodology. For each of the five datasets a prediction model was trained and the analysis involves a comparison across these models. The training and validation results indicated that the models corrected for prediction target imbalance have similarly good performance (AUC 0.831-0.843) and validation (AUC 0.881 - 0.909). Furthermore, predictor variable importance ranked social support and economic status as the most important variables with the greatest contribution to social risk prediction, however, sex and age had a lesser, but still important, contribution. Due to the complex and multifactorial nature of social risk, factors in combination, including social support and economic status, drive social risk for individuals.

摘要

中风康复后,患者需要重新融入日常生活、工作场所和社会。重新融入涉及复杂的过程,取决于年龄、性别、中风严重程度、认知、身体以及影响中风后长期结果的社会经济因素。此外,中风后的生活质量可能会受到家庭、社会、经济、住房和患者所需其他支持不足的社会风险的影响。社会风险和成功融入的障碍尚未得到充分理解,但对于告知临床或社会干预措施至关重要。因此,这项工作的目的是使用康复入院时的社会人口学和临床变量预测康复出院时的社会风险,并确定导致这种风险的因素。基于决策树的梯度提升建模方法应用于一个由 217 名主要为年轻(平均年龄 52.7 岁)、男性(66.4%)、缺血性中风幸存者组成的加泰罗尼亚患者队列。建模任务是根据 16 个不同的人口统计学、诊断和社会风险变量(家庭支持、社会支持、经济状况、入院时的同居和家庭可达性)预测患者出院后的社会风险。为了纠正具有高低风险水平(预测目标)的患者样本数量不平衡,通过改变数据抽样方法准备了五个不同的数据集。为每个数据集训练了一个预测模型,并对这些模型进行了比较。训练和验证结果表明,校正预测目标不平衡的模型具有相似的良好性能(AUC 0.831-0.843)和验证(AUC 0.881-0.909)。此外,预测变量重要性将社会支持和经济状况列为对社会风险预测贡献最大的最重要变量,但性别和年龄的贡献较小,但仍然很重要。由于社会风险的复杂性和多因素性质,包括社会支持和经济状况在内的因素共同决定了个体的社会风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3969/11066106/8a916f3e52fc/41598_2024_60507_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验