Suppr超能文献

使用泛型完全等距不变量加速材料属性预测。

Accelerating material property prediction using generically complete isometry invariants.

作者信息

Balasingham Jonathan, Zamaraev Viktor, Kurlin Vitaliy

机构信息

Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK.

出版信息

Sci Rep. 2024 May 2;14(1):10132. doi: 10.1038/s41598-024-59938-z.

Abstract

Periodic material or crystal property prediction using machine learning has grown popular in recent years as it provides a computationally efficient replacement for classical simulation methods. A crucial first step for any of these algorithms is the representation used for a periodic crystal. While similar objects like molecules and proteins have a finite number of atoms and their representation can be built based upon a finite point cloud interpretation, periodic crystals are unbounded in size, making their representation more challenging. In the present work, we adapt the Pointwise Distance Distribution (PDD), a continuous and generically complete isometry invariant for periodic point sets, as a representation for our learning algorithm. The PDD distinguished all (more than 660 thousand) periodic crystals in the Cambridge Structural Database as purely periodic sets of points without atomic types. We develop a transformer model with a modified self-attention mechanism that combines PDD with compositional information via a spatial encoding method. This model is tested on the crystals of the Materials Project and Jarvis-DFT databases and shown to produce accuracy on par with state-of-the-art methods while being several times faster in both training and prediction time.

摘要

近年来,使用机器学习进行周期性材料或晶体性质预测变得越来越流行,因为它为传统模拟方法提供了一种计算效率更高的替代方法。对于任何此类算法来说,关键的第一步是用于周期性晶体的表示。虽然像分子和蛋白质这样的类似对象具有有限数量的原子,并且它们的表示可以基于有限点云解释来构建,但周期性晶体的大小是无界的,这使得它们的表示更具挑战性。在本工作中,我们采用点到点距离分布(PDD),一种用于周期性点集的连续且通用完整的等距不变量,作为我们学习算法的表示。PDD 将剑桥结构数据库中的所有(超过 66 万)周期性晶体区分为无原子类型的纯周期性点集。我们开发了一种具有改进自注意力机制的变压器模型,该模型通过空间编码方法将 PDD 与组成信息相结合。该模型在材料项目和贾维斯 - DFT 数据库的晶体上进行了测试,结果表明其产生的准确性与最先进的方法相当,同时在训练和预测时间上快了几倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe4/11065885/5abd04874a2a/41598_2024_59938_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验