Suppr超能文献

基于点云的深度学习策略用于预测蛋白质-配体结合亲和力。

A point cloud-based deep learning strategy for protein-ligand binding affinity prediction.

机构信息

Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.

Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab474.

Abstract

There is great interest to develop artificial intelligence-based protein-ligand binding affinity models due to their immense applications in drug discovery. In this paper, PointNet and PointTransformer, two pointwise multi-layer perceptrons have been applied for protein-ligand binding affinity prediction for the first time. Three-dimensional point clouds could be rapidly generated from PDBbind-2016 with 3772 and 11 327 individual point clouds derived from the refined or/and general sets, respectively. These point clouds (the refined or the extended set) were used to train PointNet or PointTransformer, resulting in protein-ligand binding affinity prediction models with Pearson correlation coefficients R = 0.795 or 0.833 from the extended data set, respectively, based on the CASF-2016 benchmark test. The analysis of parameters suggests that the two deep learning models were capable to learn many interactions between proteins and their ligands, and some key atoms for the interactions could be visualized. The protein-ligand interaction features learned by PointTransformer could be further adapted for the XGBoost-based machine learning algorithm, resulting in prediction models with an average Rp of 0.827, which is on par with state-of-the-art machine learning models. These results suggest that the point clouds derived from PDBbind data sets are useful to evaluate the performance of 3D point clouds-centered deep learning algorithms, which could learn atomic features of protein-ligand interactions from natural evolution or medicinal chemistry and thus have wide applications in chemistry and biology.

摘要

由于人工智能 (AI) 基蛋白-配体结合亲和力模型在药物发现中的广泛应用,人们对其开发产生了浓厚的兴趣。在本文中,首次将 PointNet 和 PointTransformer 这两种基于点的多层感知器应用于蛋白-配体结合亲和力预测。可以从 PDBbind-2016 中快速生成三维点云,其中分别从精制集和一般集得到 3772 个和 11327 个个体点云。这些点云(精制集或扩展集)被用于训练 PointNet 或 PointTransformer,基于 CASF-2016 基准测试,分别从扩展数据集得到 Pearson 相关系数 R=0.795 或 0.833 的蛋白-配体结合亲和力预测模型。参数分析表明,这两个深度学习模型能够学习蛋白质与其配体之间的许多相互作用,并且可以可视化一些相互作用的关键原子。PointTransformer 学习的蛋白-配体相互作用特征可以进一步适用于基于 XGBoost 的机器学习算法,得到平均 Rp 为 0.827 的预测模型,与最先进的机器学习模型相当。这些结果表明,从 PDBbind 数据集导出的点云可用于评估以 3D 点云为中心的深度学习算法的性能,这些算法可以从自然进化或药物化学中学习蛋白-配体相互作用的原子特征,从而在化学和生物学中具有广泛的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验