文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微随机试验中根据测量或未测量的背景因素处理结局缺失数据:模拟与应用研究

Handling of outcome missing data dependent on measured or unmeasured background factors in micro-randomized trial: Simulation and application study.

作者信息

Kondo Masahiro, Oba Koji

机构信息

Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan.

Graduate School of Health Management, Keio University, Kanagawa, Japan.

出版信息

Digit Health. 2024 Apr 30;10:20552076241249631. doi: 10.1177/20552076241249631. eCollection 2024 Jan-Dec.


DOI:10.1177/20552076241249631
PMID:38698826
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11064756/
Abstract

BACKGROUND: Micro-randomized trials (MRTs) enhance the effects of mHealth by determining the optimal components, timings, and frequency of interventions. Appropriate handling of missing values is crucial in clinical research; however, it remains insufficiently explored in the context of MRTs. Our study aimed to investigate appropriate methods for missing data in simple MRTs with uniform intervention randomization and no time-dependent covariates. We focused on outcome missing data depending on the participants' background factors. METHODS: We evaluated the performance of the available data analysis (AD) and the multiple imputation in generalized estimating equations (GEE) and random effects model (RE) through simulations. The scenarios were examined based on the presence of unmeasured background factors and the presence of interaction effects. We conducted the regression and propensity score methods as multiple imputation. These missing data handling methods were also applied to actual MRT data. RESULTS: Without the interaction effect, AD was biased for GEE, but there was almost no bias for RE. With the interaction effect, estimates were biased for both. For multiple imputation, regression methods estimated without bias when the imputation models were correct, but bias occurred when the models were incorrect. However, this bias was reduced by including the random effects in the imputation model. In the propensity score method, bias occurred even when the missing probability model was correct. CONCLUSIONS: Without the interaction effect, AD of RE was preferable. When employing GEE or anticipating interactions, we recommend the multiple imputation, especially with regression methods, including individual-level random effects.

摘要

背景:微随机试验(MRTs)通过确定干预的最佳组成部分、时机和频率来增强移动健康的效果。在临床研究中,正确处理缺失值至关重要;然而,在MRTs的背景下,这方面的研究仍不充分。我们的研究旨在探讨在具有统一干预随机化且无时间依存协变量的简单MRTs中处理缺失数据的合适方法。我们关注取决于参与者背景因素的结局缺失数据。 方法:我们通过模拟评估了广义估计方程(GEE)和随机效应模型(RE)中可用数据分析(AD)和多重填补的性能。根据未测量背景因素的存在情况和交互效应的存在情况来考察各种场景。我们将回归和倾向评分方法作为多重填补方法。这些缺失数据处理方法也应用于实际的MRT数据。 结果:在没有交互效应的情况下,AD对GEE有偏差,但对RE几乎没有偏差。存在交互效应时,两种方法的估计都有偏差。对于多重填补,当填补模型正确时,回归方法的估计无偏差,但模型错误时会出现偏差。然而,通过在填补模型中纳入随机效应,这种偏差会减小。在倾向评分方法中,即使缺失概率模型正确也会出现偏差。 结论:在没有交互效应的情况下,RE的AD更可取。当使用GEE或预期存在交互作用时,我们建议采用多重填补,尤其是采用包括个体水平随机效应的回归方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/27600209d4fe/10.1177_20552076241249631-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/33fa18f7f6b9/10.1177_20552076241249631-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/a93dd9a52e95/10.1177_20552076241249631-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/7fb15dbad442/10.1177_20552076241249631-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/b2e48cc96102/10.1177_20552076241249631-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/27600209d4fe/10.1177_20552076241249631-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/33fa18f7f6b9/10.1177_20552076241249631-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/a93dd9a52e95/10.1177_20552076241249631-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/7fb15dbad442/10.1177_20552076241249631-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/b2e48cc96102/10.1177_20552076241249631-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df8/11064756/27600209d4fe/10.1177_20552076241249631-fig5.jpg

相似文献

[1]
Handling of outcome missing data dependent on measured or unmeasured background factors in micro-randomized trial: Simulation and application study.

Digit Health. 2024-4-30

[2]
A comparison of different methods to handle missing data in the context of propensity score analysis.

Eur J Epidemiol. 2018-10-19

[3]
Imputation strategies for missing binary outcomes in cluster randomized trials.

BMC Med Res Methodol. 2011-2-16

[4]
Properties and pitfalls of weighting as an alternative to multilevel multiple imputation in cluster randomized trials with missing binary outcomes under covariate-dependent missingness.

Stat Methods Med Res. 2020-5

[5]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[6]
Should multiple imputation be the method of choice for handling missing data in randomized trials?

Stat Methods Med Res. 2016-12-19

[7]
Multiple imputation for handling missing outcome data when estimating the relative risk.

BMC Med Res Methodol. 2017-9-6

[8]
Propensity score analysis with partially observed covariates: How should multiple imputation be used?

Stat Methods Med Res. 2017-6-2

[9]
Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes.

Psychometrika. 2020-12

[10]
Multiple imputation with missing indicators as proxies for unmeasured variables: simulation study.

BMC Med Res Methodol. 2020-7-8

本文引用的文献

[1]
Multiple imputation of missing data under missing at random: compatible imputation models are not sufficient to avoid bias if they are mis-specified.

J Clin Epidemiol. 2023-8

[2]
Handling missing values in healthcare data: A systematic review of deep learning-based imputation techniques.

Artif Intell Med. 2023-8

[3]
The Effect of SMS Reminders on Adherence in a Self-Guided Internet-Delivered Intervention for Adults With ADHD.

Front Digit Health. 2022-5-16

[4]
Digital Prompts to Increase Engagement With the Headspace App and for Stress Regulation Among Parents: Feasibility Study.

JMIR Form Res. 2022-3-21

[5]
The microrandomized trial for developing digital interventions: Experimental design and data analysis considerations.

Psychol Methods. 2022-10

[6]
SuperMICE: An Ensemble Machine Learning Approach to Multiple Imputation by Chained Equations.

Am J Epidemiol. 2022-2-19

[7]
A Text Messaging Intervention (StayWell at Home) to Counteract Depression and Anxiety During COVID-19 Social Distancing: Pre-Post Study.

JMIR Ment Health. 2021-11-1

[8]
Daily Motivational Text Messages to Promote Physical Activity in University Students: Results From a Microrandomized Trial.

Ann Behav Med. 2022-2-11

[9]
Linear mixed models with endogenous covariates: modeling sequential treatment effects with application to a mobile health study.

Stat Sci. 2020

[10]
Rates of Attrition and Dropout in App-Based Interventions for Chronic Disease: Systematic Review and Meta-Analysis.

J Med Internet Res. 2020-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索