不同方法在倾向评分分析中处理缺失数据的比较。

A comparison of different methods to handle missing data in the context of propensity score analysis.

机构信息

Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, C7-P, 2333 ZA, Leiden, The Netherlands.

Department of Endocrinology and Metabolism, Leiden University Medical Center, Albinusdreef 2, C7-P, 2333 ZA, Leiden, The Netherlands.

出版信息

Eur J Epidemiol. 2019 Jan;34(1):23-36. doi: 10.1007/s10654-018-0447-z. Epub 2018 Oct 19.

Abstract

Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random. Here, combining multiple imputation and the missing indicator method reduced the bias as the missing indicator variable can be a proxy for unobserved confounding. The optimal way to handle missing values in covariates of propensity score models depends on the missing data structure and the presence of effect modification. When effect modification is present, default settings of imputation methods may yield biased results even if data are missing at random.

摘要

倾向评分分析是控制观察性研究中混杂因素的一种常用方法。在倾向评分方法中,混杂因素存在缺失值是一个挑战。目前存在几种处理缺失值的策略,但需要指导如何选择最佳方法。在这项模拟研究中,我们比较了在倾向匹配和倾向评分加权中处理缺失协变量值的四种策略。这些方法包括:完全案例分析、缺失指示符方法、多重插补和结合多重插补和缺失指示符方法。同时,我们旨在提供选择最佳策略的指导。模拟场景在缺失机制、存在效应修饰或未测量混杂因素方面存在差异。此外,我们展示了缺失图如何帮助澄清缺失结构。当不存在效应修饰时,即使数据不是随机缺失,完全案例分析也能得出有效的因果治疗效果。在某些情况下,完全案例分析也能够部分纠正未测量的混杂因素。如果数据是随机缺失的,并且插补模型正确指定,多重插补效果良好。当存在效应修饰时,需要比常用统计软件的默认选项更复杂的插补模型。当数据不是随机缺失时,多重插补可能会失败。在这里,结合多重插补和缺失指示符方法可以减少偏差,因为缺失指示变量可以作为未观察到的混杂因素的替代物。在倾向评分模型的协变量中处理缺失值的最佳方法取决于缺失数据结构和效应修饰的存在。当存在效应修饰时,即使数据是随机缺失的,插补方法的默认设置也可能产生有偏的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f1/6325992/df5fd8f618aa/10654_2018_447_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索