Suppr超能文献

精神病症状发展与演变的计算学阐释

A computational account of the development and evolution of psychotic symptoms.

作者信息

Powers Albert, Angelos Philip, Bond Alexandria, Farina Emily, Fredericks Carolyn, Gandhi Jay, Greenwald Maximillian, Hernandez-Busot Gabriela, Hosein Gabriel, Kelley Megan, Mourgues Catalina, Palmer William, Rodriguez-Sanchez Julia, Seabury Rashina, Toribio Silmilly, Vin Raina, Weleff Jeremy, Benrimoh David

机构信息

Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA.

Yale University Department of Psychology, New Haven, CT USA.

出版信息

ArXiv. 2024 Apr 16:arXiv:2404.10954v1.

Abstract

The mechanisms of psychotic symptoms like hallucinations and delusions are often investigated in fully-formed illness, well after symptoms emerge. These investigations have yielded key insights, but are not well-positioned to reveal the dynamic forces underlying symptom formation itself. Understanding symptom development over time would allow us to identify steps in the pathophysiological process leading to psychosis, shifting the focus of psychiatric intervention from symptom alleviation to prevention. We propose a model for understanding the emergence of psychotic symptoms within the context of an adaptive, developing neural system. We will make the case for a pathophysiological process that begins with cortical hyperexcitability and bottom-up noise transmission, which engenders inappropriate belief formation via aberrant prediction error signaling. We will argue that this bottom-up noise drives learning about the (im)precision of new incoming sensory information because of diminished signal-to-noise ratio, causing an adaptive relative over-reliance on prior beliefs. This over-reliance on priors predisposes to hallucinations and covaries with hallucination severity. An over-reliance on priors may also lead to increased conviction in the beliefs generated by bottom-up noise and drive movement toward conversion to psychosis. We will identify predictions of our model at each stage, examine evidence to support or refute those predictions, and propose experiments that could falsify or help select between alternative elements of the overall model. Nesting computational abnormalities within longitudinal development allows us to account for hidden dynamics among the mechanisms driving symptom formation and to view established symptomatology as a point of equilibrium among competing biological forces.

摘要

幻觉和妄想等精神症状的机制通常在症状出现很久之后的完全形成的疾病中进行研究。这些研究已经产生了关键的见解,但并不适合揭示症状形成本身背后的动态力量。了解症状随时间的发展将使我们能够识别导致精神病的病理生理过程中的步骤,将精神科干预的重点从症状缓解转向预防。我们提出了一个模型,用于理解在适应性发育的神经系统背景下精神症状的出现。我们将阐述一个病理生理过程,该过程始于皮质过度兴奋和自下而上的噪声传递,通过异常的预测误差信号导致不适当的信念形成。我们将论证,由于信噪比降低,这种自下而上的噪声驱动了对新传入感觉信息(不)精确性的学习,导致对先验信念的适应性相对过度依赖。这种对先验的过度依赖易引发幻觉,并与幻觉严重程度相关。对先验的过度依赖还可能导致对由自下而上的噪声产生的信念的坚信度增加,并推动向精神病转变。我们将在每个阶段确定我们模型的预测,检查支持或反驳这些预测的证据,并提出可能证伪或有助于在整体模型的替代元素之间进行选择的实验。将计算异常嵌套在纵向发展中,使我们能够解释驱动症状形成的机制之间隐藏的动态,并将既定的症状视为竞争生物力量之间的平衡状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a439/11065053/47c2c1904140/nihpp-2404.10954v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验