Jin Huding, Pyo Seonmi, Seo Harim, Cho Jinil, Han Junghyup, Han Juyeon, Yun Heejun, Kim Heebae, Lee Jeewon, Min Byeongyun, Yoo Jeeyoung, Kim Youn Sang
Institute of Chemical Processes, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
Small. 2024 Sep;20(36):e2401928. doi: 10.1002/smll.202401928. Epub 2024 May 3.
The formation of a stable solid electrolyte interphase (SEI) layer is crucial for enhancing the safety and lifespan of Li metal batteries. Fundamentally, a homogeneous Li behavior by controlling the chemical reaction at the anode/electrolyte interface is the key to establishing a stable SEI layer. However, due to the highly reactive nature of Li metal anodes (LMAs), controlling the movement of Li at the anode/electrolyte interface remains challenging. Here, an advanced approach is proposed for coating a sacrificial layer called fluorinated self-assembled monolayer (FSL) on a boehmite-coated polyethylene (BPE) separator to form a stable SEI layer. By leveraging the strong affinity between the fluorine functional group and Li, the rapid formation of a LiF-rich SEI layer in the cell production and early cycling stage is facilitated. This initial stable SEI formation promotes the subsequent homogeneous Li flux, thereby improving the LMA stability and yielding an enhanced battery lifespan. Further, the mechanism behind the stable SEI layer generation by controlling the Li dynamics through the FSL-treated BPE separator is comprehensively verified. Overall, this research offers significant contributions to the energy storage field by addressing challenges associated with LMAs, thus highlighting the importance of interfacial control in achieving a stable SEI layer.
形成稳定的固体电解质界面(SEI)层对于提高锂金属电池的安全性和使用寿命至关重要。从根本上说,通过控制阳极/电解质界面处的化学反应来实现均匀的锂行为是建立稳定SEI层的关键。然而,由于锂金属阳极(LMA)具有高反应活性,控制锂在阳极/电解质界面处的移动仍然具有挑战性。在此,提出了一种先进的方法,即在勃姆石涂层的聚乙烯(BPE)隔膜上涂覆一层称为氟化自组装单分子层(FSL)的牺牲层,以形成稳定的SEI层。通过利用氟官能团与锂之间的强亲和力,促进了在电池生产和早期循环阶段快速形成富含LiF的SEI层。这种初始稳定的SEI形成促进了随后均匀的锂通量,从而提高了LMA的稳定性并延长了电池寿命。此外,通过FSL处理的BPE隔膜控制锂动力学来生成稳定SEI层背后的机制得到了全面验证。总体而言,这项研究通过应对与LMA相关的挑战,为储能领域做出了重大贡献,从而突出了界面控制在实现稳定SEI层方面的重要性。