Li Chao, Liang Zhenye, Li Zizhao, Cao Daofan, Zuo Daxian, Chang Jian, Wang Jun, Deng Yonghong, Liu Ke, Kong Xian, Wan Jiayu
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
Nano Lett. 2023 May 10;23(9):4014-4022. doi: 10.1021/acs.nanolett.3c00783. Epub 2023 Apr 20.
Lithium metal is widely regarded as the "ultimate" anode for energy-dense Li batteries, but its high reactivity and delicate interface make it prone to dendrite formation, limiting its practical use. Inspired by self-assembled monolayers on metal surfaces, we propose a facile yet effective strategy to stabilize Li metal anodes by creating an artificial solid electrolyte interphase (SEI). Our method involves dip-coating Li metal in MPDMS to create an SEI layer that is rich in inorganic components, allowing uniform Li plating/stripping under a low overpotential over 500 cycles in carbonate electrolytes. In comparison, pristine Li metal shows a rapid increase in overpotential after merely 300 cycles, leading to failure soon after. Molecular dynamics simulations demonstrate that this uniform artificial SEI suppresses Li dendrite formation. We further demonstrated its enhanced stability pairing with LiFePO and LiNiCoMnO cathodes, highlighting the proposed strategy as a promising solution for practical Li metal batteries.
锂金属被广泛认为是能量密集型锂电池的“终极”负极,但它的高反应活性和脆弱的界面使其易于形成枝晶,限制了其实际应用。受金属表面自组装单分子层的启发,我们提出了一种简便而有效的策略,通过创建人工固体电解质界面(SEI)来稳定锂金属负极。我们的方法包括将锂金属浸涂在MPDMS中以创建富含无机成分的SEI层,从而在碳酸盐电解质中以低过电位在500次循环内实现均匀的锂电镀/剥离。相比之下,原始锂金属仅在300次循环后过电位就迅速增加,随后很快失效。分子动力学模拟表明,这种均匀的人工SEI抑制了锂枝晶的形成。我们进一步证明了其与LiFePO和LiNiCoMnO正极配对时增强的稳定性,突出了所提出的策略作为实用锂金属电池的一种有前景的解决方案。