Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, China.
Cell Rep. 2024 May 28;43(5):114170. doi: 10.1016/j.celrep.2024.114170. Epub 2024 May 2.
During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.
在细胞命运转变过程中,细胞会重塑其转录组、染色质和表观基因组;然而,在单细胞水平上确定这些变化的时间动态和因果关系一直具有挑战性。在这里,我们采用异核介导的重编程系统作为单细胞模型,使用超分辨率成像来剖析多能性转化早期阶段的关键时间事件。我们揭示了,在异核形成后,体细胞核经历全局染色质解压缩和抑制性组蛋白修饰 H3K9me3 和 H3K27me3 的去除,而没有获得活性修饰 H3K4me3 和 H3K9ac。多能性基因 OCT4(POU5F1)在细胞融合后的头 24 小时内表现出新生和成熟的 RNA 转录,而不需要其基因座上的初始开放染色质构型。相比之下,NANOG 仅在细胞融合后 48 小时才有显著的新生 RNA 转录,但令人惊讶的是,它很早就表现出基因组重新开放。这些发现表明,细胞重编程过程中染色质紧缩和基因激活之间的时间关系取决于基因背景。