Suppr超能文献

拟南芥分支酸变位酶 1 催化分支酸异构化的结构基础。

Structural basis of chorismate isomerization by Arabidopsis ISOCHORISMATE SYNTHASE1.

机构信息

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China.

Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.

出版信息

Plant Physiol. 2024 Oct 1;196(2):773-787. doi: 10.1093/plphys/kiae260.

Abstract

Salicylic acid (SA) plays a crucial role in plant defense against biotrophic and semibiotrophic pathogens. In Arabidopsis (Arabidopsis thaliana), isochorismate synthase 1 (AtICS1) is a key enzyme for the pathogen-induced biosynthesis of SA via catalytic conversion of chorismate into isochorismate, an essential precursor for SA synthesis. Despite the extensive knowledge of ICS1-related menaquinone, siderophore, and tryptophan (MST) enzymes in bacteria, the structural mechanisms for substrate binding and catalysis in plant isochorismate synthase (ICS) enzymes are unknown. This study reveals that plant ICS enzymes catalyze the isomerization of chorismate through a magnesium-dependent mechanism, with AtICS1 exhibiting the most substantial catalytic activity. Additionally, we present high-resolution crystal structures of apo AtICS1 and its complex with chorismate, offering detailed insights into the mechanisms of substrate recognition and catalysis. Importantly, our investigation indicates the existence of a potential substrate entrance channel and a gating mechanism regulating substrate into the catalytic site. Structural comparisons of AtICS1 with MST enzymes suggest a shared structural framework with conserved gating and catalytic mechanisms. This work provides valuable insights into the structural and regulatory mechanisms governing substrate delivery and catalysis in AtICS1, as well as other plant ICS enzymes.

摘要

水杨酸(SA)在植物防御生物和半生物病原体中起着至关重要的作用。在拟南芥(Arabidopsis thaliana)中,异分支酸合酶 1(AtICS1)是通过催化分支酸转化为异分支酸来诱导病原菌合成 SA 的关键酶,异分支酸是 SA 合成的必需前体。尽管人们对细菌中的异分支酸合酶(ICS)相关menaquinone、铁载体和色氨酸(MST)酶有了广泛的了解,但植物 ICS 酶的底物结合和催化的结构机制尚不清楚。本研究揭示了植物 ICS 酶通过依赖镁的机制催化分支酸的异构化,其中 AtICS1 表现出最强的催化活性。此外,我们还呈现了apo AtICS1 及其与分支酸复合物的高分辨率晶体结构,提供了关于底物识别和催化机制的详细见解。重要的是,我们的研究表明存在一个潜在的底物入口通道和一个调节底物进入催化位点的门控机制。AtICS1 与 MST 酶的结构比较表明存在一个共享的结构框架,具有保守的门控和催化机制。这项工作为 AtICS1 以及其他植物 ICS 酶的底物传递和催化的结构和调节机制提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验