Suppr超能文献

在病原体诱导的水杨酸生物合成中发挥作用的拟南芥异分支酸合酶表现出与多种应激反应作用相符的特性。

Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses.

作者信息

Strawn Marcus A, Marr Sharon K, Inoue Kentaro, Inada Noriko, Zubieta Chloe, Wildermuth Mary C

机构信息

Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720-3102, USA.

出版信息

J Biol Chem. 2007 Feb 23;282(8):5919-33. doi: 10.1074/jbc.M605193200. Epub 2006 Dec 26.

Abstract

Salicylic acid (SA) is a phytohormone best known for its role in plant defense. It is synthesized in response to diverse pathogens and responsible for the large scale transcriptional induction of defense-related genes and the establishment of systemic acquired resistance. Surprisingly, given its importance in plant defense, an understanding of the underlying enzymology is lacking. In Arabidopsis thaliana, the pathogen-induced accumulation of SA requires isochorismate synthase (AtICS1). Here, we show that AtICS1 is a plastid-localized, stromal protein using chloroplast import assays and immunolocalization. AtICS1 acts as a monofunctional isochorismate synthase (ICS), catalyzing the conversion of chorismate to isochorismate (IC) in a reaction that operates near equilibrium (K(eq) = 0.89). It does not convert chorismate directly to SA (via an IC intermediate) as does Yersinia enterocolitica Irp9. Using an irreversible coupled spectrophotometric assay, we found that AtICS1 exhibits an apparent K(m) of 41.5 mum and k(cat) = 38.7 min(-1) for chorismate. This affinity for chorismate would allow it to successfully compete with other pathogen-induced, chorismate-utilizing enzymes. Furthermore, the biochemical properties of AtICS1 indicate its activity is not regulated by light-dependent changes in stromal pH, Mg(2+), or redox and that it is remarkably active at 4 degrees C consistent with a role for SA in cold-tolerant growth. Finally, our analyses support plastidic synthesis of stress-induced SA with the requirement for one or more additional enzymes responsible for the conversion of IC to SA, because non-enzymatic conversion of IC to SA under physiological conditions was negligible.

摘要

水杨酸(SA)是一种植物激素,因其在植物防御中的作用而广为人知。它在对多种病原体的响应中合成,负责防御相关基因的大规模转录诱导以及系统获得性抗性的建立。令人惊讶的是,尽管它在植物防御中很重要,但对其潜在的酶学机制却缺乏了解。在拟南芥中,病原体诱导的SA积累需要异分支酸合酶(AtICS1)。在这里,我们通过叶绿体导入分析和免疫定位表明AtICS1是一种定位于质体基质的蛋白质。AtICS1作为一种单功能异分支酸合酶(ICS),在接近平衡的反应(K(eq)= 0.89)中催化分支酸转化为异分支酸(IC)。它不像小肠结肠炎耶尔森菌Irp9那样直接将分支酸转化为SA(通过IC中间体)。使用不可逆偶联分光光度法,我们发现AtICS1对分支酸的表观K(m)为41.5 μM,k(cat)= 38.7 min⁻¹。这种对分支酸的亲和力使其能够成功地与其他病原体诱导的、利用分支酸的酶竞争。此外,AtICS1的生化特性表明其活性不受基质pH、Mg²⁺或氧化还原的光依赖性变化调节,并且在4℃时具有显著活性,这与SA在耐寒生长中的作用一致。最后,我们的分析支持应激诱导的SA在质体中的合成,因为需要一种或多种额外的酶将IC转化为SA,因为在生理条件下IC向SA的非酶促转化可以忽略不计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验