Hsieh Ju-Hao, Chow Julie Chi
Department of Emergency Medicine, Chi Mei Medical Center, Tainan (700), Taiwan.
Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan.
Medicine (Baltimore). 2024 May 3;103(18):e37993. doi: 10.1097/MD.0000000000037993.
The Rasch Rating Scale Model (RSM) is widely used in questionnaire analysis, providing insights into how individuals respond to item-level stimuli. Existing software for Rasch RSM parameter estimation, while powerful, often presents a steep learning curve. An accessible online tool can greatly benefit novice users, particularly students and clinicians, by simplifying the analytical process. This study introduces an online tool, an intuitive online RSM analysis tool designed to facilitate questionnaire data analysis for applied researchers, students, and clinicians. The online tool employs the joint maximum likelihood method for estimation, yielding estimates, standard errors (SE), and fit statistics iteratively. A unique feature of the tool is its ability to visualize estimates on Google Maps with an opacity setting of 0, enhancing data interpretation through a user-friendly interface. This study outlines the estimation process and key features, employing data from 200 proxy participants who answered 20 5-point questions regarding doctor-patient and doctor-family interactions in pediatric consultations. Mobile computerized adaptive testing (CAT) was employed. The online tool offers 5 essential visual displays often utilized in Rasch analyses, including the Wright Map, KIDMAP, category probability curve, performance plot, and differential item functioning (DIF) graph. DIF analysis revealed that 2 items, concerning the doctor attentiveness and empathy toward the child illness, exhibited differences in female proxy participants' responses, indicating lower satisfaction with pediatricians. The online tool emerges as a user-friendly and efficient RSM analysis tool with notable advantages for newcomers, improving data visualization and comprehension. Its capacity to pinpoint key areas of concern, such as gender-related satisfaction disparities among proxy participants, enhances its utility in questionnaire analysis. The online tool holds promise as a valuable resource for researchers, students, and clinicians seeking accessible Rasch analysis solutions.
拉施克评分量表模型(RSM)在问卷分析中被广泛应用,有助于深入了解个体对项目层面刺激的反应。现有的用于拉施克RSM参数估计的软件虽然功能强大,但通常学习曲线较陡。一个易于使用的在线工具可以通过简化分析过程,极大地造福新手用户,尤其是学生和临床医生。本研究介绍了一种在线工具,这是一种直观的在线RSM分析工具,旨在方便应用研究人员、学生和临床医生进行问卷数据分析。该在线工具采用联合最大似然法进行估计,迭代生成估计值、标准误差(SE)和拟合统计量。该工具的一个独特功能是能够在谷歌地图上以不透明度设置为0的方式可视化估计值,通过用户友好的界面增强数据解释。本研究概述了估计过程和关键特性,使用了200名代理参与者的数据,这些参与者回答了20个关于儿科会诊中医患和医家互动的5分制问题。采用了移动计算机自适应测试(CAT)。该在线工具提供了拉施克分析中常用的5种基本可视化显示,包括赖特图、儿童图、类别概率曲线、表现图和项目功能差异(DIF)图。DIF分析显示,有2个项目,即关于医生对儿童疾病的关注度和同理心,在女性代理参与者的回答中存在差异,表明对儿科医生的满意度较低。该在线工具成为一个用户友好且高效的RSM分析工具,对新手具有显著优势,改善了数据可视化和理解。它能够确定关键关注领域,如代理参与者中与性别相关的满意度差异,增强了其在问卷分析中的实用性。该在线工具有望成为寻求易于使用的拉施克分析解决方案的研究人员、学生和临床医生的宝贵资源。