Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada; email:
Annu Rev Anal Chem (Palo Alto Calif). 2024 Jul;17(1):313-338. doi: 10.1146/annurev-anchem-061622-012448. Epub 2024 Jul 2.
A frontier of analytical sciences is centered on the continuous measurement of molecules in or near cells, tissues, or organs, within the biological context in situ, where the molecular-level information is indicative of health status, therapeutic efficacy, and fundamental biochemical function of the host. Following the completion of the Human Genome Project, current research aims to link genes to functions of an organism and investigate how the environment modulates functional properties of organisms. New analytical methods have been developed to detect chemical changes with high spatial and temporal resolution, including minimally invasive surface-enhanced Raman scattering (SERS) nanofibers using the principles of endoscopy (SERS nanoendoscopy) or optical physiology (SERS optophysiology). Given the large spectral data sets generated from these experiments, SERS nanoendoscopy and optophysiology benefit from advances in data science and machine learning to extract chemical information from complex vibrational spectra measured by SERS. This review highlights new opportunities for intracellular, extracellular, and in vivo chemical measurements arising from the combination of SERS nanosensing and machine learning.
分析科学的一个前沿领域集中在连续测量细胞、组织或器官内或附近的分子,在原位的生物学背景下,分子水平的信息表明了宿主的健康状况、治疗效果和基本生化功能。在人类基因组计划完成后,目前的研究旨在将基因与生物体的功能联系起来,并研究环境如何调节生物体的功能特性。已经开发出了新的分析方法来检测具有高时空分辨率的化学变化,包括使用内窥镜(SERS 纳米内窥镜)或光学生理学(SERS 光学生理学)原理的微创表面增强拉曼散射(SERS)纳米纤维。鉴于这些实验产生的大型光谱数据集,SERS 纳米内窥镜和光学生理学受益于数据科学和机器学习的进步,从通过 SERS 测量的复杂振动光谱中提取化学信息。这篇综述强调了 SERS 纳米传感和机器学习相结合为细胞内、细胞外和体内化学测量带来的新机遇。