Deriu Chiara, Fabris Laura
Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy.
J Phys Chem C Nanomater Interfaces. 2025 May 21;129(22):10163-10180. doi: 10.1021/acs.jpcc.5c01965. eCollection 2025 Jun 5.
Spermine is a polyamine that is ubiquitous to most analytical protocols for the direct detection of nucleic acids by surface enhanced Raman spectroscopy (SERS), where it is either used as a nanoparticle capping species or a sample aggregating agent. An attentive examination of the literature reveals the existence, in the experimental design of past recent works involving spermine and plasmonic nanoparticles, of important confounding factors relative to the surface chemistry of colloids, limiting the reach of the associated mechanistic hypotheses. Our work introduces a thermodynamics-based framework for comparative SERS studies with no confounding bias related to surface chemistry. Such experimental design is enabled by a unified colloidal nanoparticle platform, constituting the surface chemistry baseline for all of the investigated sample preparation scenarios, with and without spermine. The validation of a "minimal working example" analyte for fundamental studies on ssDNA systems is also presented, which introduces the advantage of experimentally and computationally minimizing the system, for accessible DFT-aided vibrational elucidation. The ensemble of thermodynamic and spectroscopic data gathered in this study allows for a reframing of the mechanistic hypotheses relative to spermine-containing SERS samples by decoupling the system into its pairwise interaction equilibria. It is demonstrated that the spermine-nucleic acid interaction is thermodynamically dominant, and that the equilibria that are established at the nanoscale surface in the presence of spermine are independent of the sample preparation order. Our results and methodological approach are key to the development of selectivity-optimized SERS methods for nucleic acid detection, and have a wide interest reach for all of those nano- and biotechnological fields that exploit surface chemistry interactions.
精胺是一种多胺,在大多数通过表面增强拉曼光谱(SERS)直接检测核酸的分析方法中普遍存在,它要么用作纳米颗粒封端剂,要么用作样品聚集剂。仔细查阅文献发现,在过去涉及精胺和等离子体纳米颗粒的近期实验设计中,存在与胶体表面化学相关的重要混杂因素,这限制了相关机理假设的适用范围。我们的工作引入了一个基于热力学的框架,用于比较SERS研究,且不存在与表面化学相关的混杂偏差。这种实验设计由一个统一的胶体纳米颗粒平台实现,该平台构成了所有研究的样品制备方案(有精胺和无精胺)的表面化学基线。本文还展示了一个用于单链DNA系统基础研究的“最小工作示例”分析物的验证,它介绍了通过实验和计算使系统最小化的优势,以便进行可及的密度泛函理论辅助振动解析。本研究收集的热力学和光谱数据集合允许通过将系统解耦为其成对相互作用平衡来重新构建关于含精胺SERS样品的机理假设。结果表明,精胺 - 核酸相互作用在热力学上占主导地位,并且在存在精胺的情况下在纳米级表面建立的平衡与样品制备顺序无关。我们的结果和方法学方法是开发用于核酸检测的选择性优化SERS方法的关键,并且对所有利用表面化学相互作用的纳米技术和生物技术领域都具有广泛的意义。