Suppr超能文献

基于深度学习的多模型方法预测类药性化学化合物的毒性。

A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity.

机构信息

Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India.

Guangdong-Hong Kong-Macao Greater Bay Area Center for Drug Evaluation and Inspection of NMPA, Shenzhen 518000, China.

出版信息

Methods. 2024 Jun;226:164-175. doi: 10.1016/j.ymeth.2024.04.020. Epub 2024 May 1.

Abstract

Ensuring the safety and efficacy of chemical compounds is crucial in small-molecule drug development. In the later stages of drug development, toxic compounds pose a significant challenge, losing valuable resources and time. Early and accurate prediction of compound toxicity using deep learning models offers a promising solution to mitigate these risks during drug discovery. In this study, we present the development of several deep-learning models aimed at evaluating different types of compound toxicity, including acute toxicity, carcinogenicity, hERG_cardiotoxicity (the human ether-a-go-go related gene caused cardiotoxicity), hepatotoxicity, and mutagenicity. To address the inherent variations in data size, label type, and distribution across different types of toxicity, we employed diverse training strategies. Our first approach involved utilizing a graph convolutional network (GCN) regression model to predict acute toxicity, which achieved notable performance with Pearson R 0.76, 0.74, and 0.65 for intraperitoneal, intravenous, and oral administration routes, respectively. Furthermore, we trained multiple GCN binary classification models, each tailored to a specific type of toxicity. These models exhibited high area under the curve (AUC) scores, with an impressive AUC of 0.69, 0.77, 0.88, and 0.79 for predicting carcinogenicity, hERG_cardiotoxicity, mutagenicity, and hepatotoxicity, respectively. Additionally, we have used the approved drug dataset to determine the appropriate threshold value for the prediction score in model usage. We integrated these models into a virtual screening pipeline to assess their effectiveness in identifying potential low-toxicity drug candidates. Our findings indicate that this deep learning approach has the potential to significantly reduce the cost and risk associated with drug development by expediting the selection of compounds with low toxicity profiles. Therefore, the models developed in this study hold promise as critical tools for early drug candidate screening and selection.

摘要

确保化合物的安全性和有效性是小分子药物开发的关键。在药物开发的后期阶段,有毒化合物是一个重大挑战,会浪费宝贵的资源和时间。使用深度学习模型早期且准确地预测化合物毒性为在药物发现过程中降低这些风险提供了有希望的解决方案。在这项研究中,我们开发了几种深度学习模型,旨在评估不同类型的化合物毒性,包括急性毒性、致癌性、hERG 心脏毒性(人醚-a-go-go 相关基因引起的心脏毒性)、肝毒性和致突变性。为了解决数据大小、标签类型和不同类型毒性分布方面的固有差异,我们采用了多种训练策略。我们的第一种方法是使用图卷积网络(GCN)回归模型来预测急性毒性,该模型在腹腔内、静脉内和口服给药途径下的 Pearson R 值分别达到了 0.76、0.74 和 0.65,表现出色。此外,我们还训练了多个针对特定类型毒性的 GCN 二进制分类模型。这些模型的 AUC 得分很高,预测致癌性、hERG 心脏毒性、致突变性和肝毒性的 AUC 分别达到了 0.69、0.77、0.88 和 0.79。此外,我们还使用已批准药物数据集来确定模型使用中预测分数的适当阈值。我们将这些模型集成到虚拟筛选管道中,以评估它们在识别潜在低毒性药物候选物方面的有效性。我们的研究结果表明,这种深度学习方法有可能通过加速选择具有低毒性特征的化合物,显著降低药物开发的成本和风险。因此,本研究中开发的模型有望成为早期药物候选物筛选和选择的关键工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验