Suppr超能文献

ToxMPNN:一种用于小分子毒性预测的深度学习模型。

ToxMPNN: A deep learning model for small molecule toxicity prediction.

机构信息

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.

Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China.

出版信息

J Appl Toxicol. 2024 Jul;44(7):953-964. doi: 10.1002/jat.4591. Epub 2024 Feb 26.

Abstract

Machine learning (ML) has shown a great promise in predicting toxicity of small molecules. However, the availability of data for such predictions is often limited. Because of the unsatisfactory performance of models trained on a single toxicity endpoint, we collected toxic small molecules with multiple toxicity endpoints from previous study. The dataset comprises 27 toxic endpoints categorized into seven toxicity classes, namely, carcinogenicity and mutagenicity, acute oral toxicity, respiratory toxicity, irritation and corrosion, cardiotoxicity, CYP450, and endocrine disruption. In addition, a binary classification Common-Toxicity task was added based on the aforementioned dataset. To improve the performance of the models, we added marketed drugs as negative samples. This study presents a toxicity predictive model, ToxMPNN, based on the message passing neural network (MPNN) architecture, aiming to predict the toxicity of small molecules. The results demonstrate that ToxMPNN outperforms other models in capturing toxic features within the molecular structure, resulting in more precise predictions with the ROC_AUC testing score of 0.886 for the Toxicity_drug dataset. Furthermore, it was observed that adding marketed drugs as negative samples not only improves the predictive performance of the binary classification Common-Toxicity task but also enhances the stability of the model prediction. It shows that the graph-based deep learning (DL) algorithms in this study can be used as a trustworthy and effective tool to assess small molecule toxicity in the development of new drugs.

摘要

机器学习 (ML) 在预测小分子毒性方面显示出巨大的潜力。然而,此类预测的数据可用性通常有限。由于在单一毒性终点上训练的模型性能不理想,我们从之前的研究中收集了具有多种毒性终点的有毒小分子。该数据集包含 27 个毒性终点,分为 7 个毒性类别,即致癌性和致突变性、急性口服毒性、呼吸毒性、刺激性和腐蚀性、心脏毒性、CYP450 和内分泌干扰。此外,还根据上述数据集添加了一个二进制分类常见毒性任务。为了提高模型的性能,我们添加了已上市药物作为阴性样本。本研究提出了一种基于消息传递神经网络 (MPNN) 架构的毒性预测模型 ToxMPNN,旨在预测小分子的毒性。结果表明,ToxMPNN 在捕获分子结构内的毒性特征方面优于其他模型,导致毒性药物数据集的 ROC_AUC 测试得分达到 0.886,预测更为准确。此外,观察到将已上市药物作为阴性样本添加不仅可以提高二进制分类常见毒性任务的预测性能,还可以增强模型预测的稳定性。这表明,本研究中的基于图的深度学习 (DL) 算法可以用作评估新药中小分子毒性的可靠且有效的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验