Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China.
School of Basic Medical Sciences , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China.
J Chem Inf Model. 2019 Mar 25;59(3):1073-1084. doi: 10.1021/acs.jcim.8b00769. Epub 2019 Feb 15.
Blockade of the human ether-à-go-go-related gene (hERG) channel by small molecules induces the prolongation of the QT interval which leads to fatal cardiotoxicity and accounts for the withdrawal or severe restrictions on the use of many approved drugs. In this study, we develop a deep learning approach, termed deephERG, for prediction of hERG blockers of small molecules in drug discovery and postmarketing surveillance. In total, we assemble 7,889 compounds with well-defined experimental data on the hERG and with diverse chemical structures. We find that deephERG models built by a multitask deep neural network (DNN) algorithm outperform those built by single-task DNN, naı̈ve Bayes (NB), support vector machine (SVM), random forest (RF), and graph convolutional neural network (GCNN). Specifically, the area under the receiver operating characteristic curve (AUC) value for the best model of deephERG is 0.967 on the validation set. Furthermore, based on 1,824 U.S. Food and Drug Administration (FDA) approved drugs, 29.6% drugs are computationally identified to have potential hERG inhibitory activities by deephERG, highlighting the importance of hERG risk assessment in early drug discovery. Finally, we showcase several novel predicted hERG blockers on approved antineoplastic agents, which are validated by clinical case reports, experimental evidence, and the literature. In summary, this study presents a powerful deep learning-based tool for risk assessment of hERG-mediated cardiotoxicities in drug discovery and postmarketing surveillance.
小分子对人类 ether-à-go-go 相关基因 (hERG) 通道的阻断会导致 QT 间期延长,从而引发致命的心脏毒性,并导致许多已批准药物的撤市或严格限制使用。在这项研究中,我们开发了一种深度学习方法,称为 deephERG,用于在药物发现和上市后监测中预测小分子 hERG 阻滞剂。我们总共收集了 7889 种化合物,这些化合物具有明确的 hERG 实验数据和多样化的化学结构。我们发现,由多任务深度神经网络 (DNN) 算法构建的 deephERG 模型优于由单任务 DNN、朴素贝叶斯 (NB)、支持向量机 (SVM)、随机森林 (RF) 和图卷积神经网络 (GCNN) 构建的模型。具体来说,deephERG 最佳模型在验证集上的接收器操作特征曲线 (ROC) 下面积 (AUC) 值为 0.967。此外,基于 1824 种美国食品和药物管理局 (FDA) 批准的药物,通过 deephERG 计算出 29.6%的药物具有潜在的 hERG 抑制活性,这突显了在早期药物发现中进行 hERG 风险评估的重要性。最后,我们展示了几种在批准的抗肿瘤药物上预测的新的 hERG 阻滞剂,这些药物通过临床病例报告、实验证据和文献得到了验证。总之,这项研究提出了一种强大的基于深度学习的工具,用于药物发现和上市后监测中 hERG 介导的心脏毒性风险评估。